Reference Library

TRERO Resource Library

This reference list has been made available by Claudia Sotis MD

Last update: july 2018

Index

Bubble Physics

Arieli R, Boaron E, Abramovich A – Combined effect of denucleation and denitrogenation on the risk of decompression sickness in rats
J Appl Physiol 2009; 106: 1453-1458
https://www.physiology.org/doi/full/10.1152/japplphysiol.91146.2008

Arieli R, Marmur A – Decompression sickness bubbles: Are gas micronuclei formed on flat hydrophobic surface?
Respir Physiol Neurobiol 2011; 177 (1): 19-23
https://www.sciencedirect.com/science/article/pii/S1569904811000814

Arieli R, Marmur A – Dynamics of gas micronuclei formed on a flat hydrophobic surface, the predecessors of decompression bubbles
Respir Physiol Neurobiol 2012; 185: 647-652
https://www.sciencedirect.com/science/article/pii/S1569904812003631

Arieli R, Marmur A – Evolution of bubbles from gas micronuclei formed on the luminal aspect of ovine large blood vessels
Respir Physiol Neurobiol 2013; 188: 49-55
https://www.sciencedirect.com/science/article/pii/S1569904813001183

Arieli R, Marmur A – Ex vivo bubble production from ovine large blood vessels: size on detachment and evidence of “active spots”
Respir Physiol Neurobiol 2014; 200: 110-117
https://www.sciencedirect.com/science/article/pii/S1569904814001463

Arieli R – Was the appearance of surfactants in air breathing vertebrates ultimately the cause of decompression sickness and autoimmune disease?
Respir Physiol Neurobiol 2015; 206: 15-18
https://www.sciencedirect.com/science/article/pii/S1569904814003036

Arieli R, Arieli U, Marmur A – Bubble size on detachment from the luminal aspect of ovine large blood vessels after decompression: The effect of mechanical disturbance
Respir Physiol Neurobiol 2015; 216:1-8
https://www.sciencedirect.com/science/article/pii/S1569904815001032

Arieli R, Marmur A – Expansion of bubbles under a pulsatile flow regime in decompressed ovine blood vessels
Respir Physiol Neurobiol 2016; 222: 1-5
https://www.sciencedirect.com/science/article/pii/S1569904815300835

Arieli R, Khatib S, Vaya J – Presence of dipalmitoylphosphatidylcholine from lungs at the active hydrophobic spots in the vasculature where bubbles are formed on decompression
J Appl Physiol 2016; 121: 811-815
https://www.physiology.org/doi/full/10.1152/japplphysiol.00649.2016

Arieli R – Nanobubbles form at active hydrophobic spots on the luminal aspect of blood vessels: Consequences for decompression illness in diving and possible implications for autoimmune disease – An overview
Frontiers Phys 2017; 8: Article 591
https://www.frontiersin.org/articles/10.3389/fphys.2017.00591/full

Arieli R, Marmur A – A biophysical vascular bubble model for devising decompression procedures
Physiol Rep 2017; open access, Volume 5, Issue 6
https://physoc.onlinelibrary.wiley.com/doi/pdf/10.14814/phy2.13191

Blatteau JE, Souraud JB, Gempp E, Boussuges A. – Gas nuclei, their origin, and their role in bubble formation – review
Aviat Space Environ Med 2006; 77:1068-76
https://www.ingentaconnect.com/content/asma/asem/2006/00000077/00000010/art00011

Brenner MP, Lohse D – Dynamic equilibrium mechanism for surface nanobubble stabilization
Phys Rev let 2008; 101 open access
https://arxiv.org/pdf/0810.4715.pdf

Bulavin LA, Kekicheff P, Sysoev VM, Sheiko NL – Mechanism of nanobubble formation in water on a hydrophobic surface
Ukr J Phys 2014; 59:open access
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=Mechanism+of+nanobubble+formation+in+water+on+a+hydrophobic+surface&btnG=

Chappell MA, Payne SJ – A physiological model of the interaction between tissue bubbles and the formation of blood-borne bubbles under decompression
Phys Med Biol 2006; 51: 2321-2338
http://iopscience.iop.org/article/10.1088/0031-9155/51/9/015/meta

Fang CK, Ko HC, Yang CW, Lu YH, Hwang IS – Nucleation process of nanobubbles at a solid/water interface
Sci Rep 2016; open access 6:24651
https://www.nature.com/articles/srep24651

Hills BA – A hydrophobic oligolamellar lining to the vascular lumen in some organs
Undersea Biomed Res 1992; 19: 107-20
https://europepmc.org/abstract/med/1561717

Papadopoulou V, Eckersley RJ, Balestra C, Karapantsios TD, Tank MX – A critical review of physiological bubble formation in hyperbaric decompression
Advances in Colloid and Interface Science 2013; 191-192: 22-30
http://karapant.webpages.auth.gr/wp-content/publications/2013/A94_Papadopoulou_et_al_AdvCIS_2013.pdf

Papadopoulou V, Tang MX, Balestra C, Eckersley RJ, Karapantsios TD – Circulatory bubble dynamics: From physical to biological aspects
Advances in Colloid and Interface Science 2014; 206:239-249
https://www.sciencedirect.com/science/article/pii/S0001868614000293

Papadopoulou V, Evgenidis S, Eckersley RJ, Mesimeris T, Balestra C, et al – Decompression induced bubble dynamics on ex vivo fat and muscle tissue surfaces with a new experimental set up
Colloids Surf B Biointerfaces 2015; 129: 121-129
http://karapant.webpages.auth.gr/wp-content/publications/2015/2015_Bubbles_on_surfaces.pdf

Schellart N, Rozloznik M, Balestra C – Relationships between plasma lipids, proteins, surface tension and post-dive bubbles
UHM 2015; 42: 133-141
https://s3.amazonaws.com/academia.edu.documents/45488057/Relationships_between_plasma_lipids_prot20160509-19095-1an0lr.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1537042628&Signature=oZYwTShTp1J7UbNubFSGiz1V8lM%3D&response-content-disposition=inline%3B%20filename%3DRelationships_between_plasma_lipids_prot.pdf

Sobolewski P, Kandel J. Klinger AL, Eckman DM – Air bubble contact with endothelial cells in vitro induces calcium influx and IP-3-dependent release of calcium stores
Am J Physiol Cell Physiol 2011; 301:C679-686
https://www.physiology.org/doi/pdf/10.1152/ajpcell.00046.2011

Sobolewski P, Kandel J, Eckmann DM – Air bubble contact with endothelial cells cause a calcium-independent loss in mitochondrial membrane potential
PL0S ONE 2012; open access
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047254

Swan JG, Wilbur JC, Moodie KL, Kane SA et al – Microbubbles are detected prior to larger bubbles following decompression
J Appl Physiol 2014; 116: 790-796
https://www.physiology.org/doi/full/10.1152/japplphysiol.01156.2013

Thom SR, et al – Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury
J Appl Physiol 2013; 114(5): 550-558
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01386.2012

Tikuisis P – Modeling the observations of in vivo bubble formation with hydrophobic crevices
Undersea Biomed Res 1986; 13: 165-80
https://europepmc.org/abstract/med/3727182

Yang S, Dammer SM, Bremond N, Zandvliet HJW, Kooij ES, Lohse D – Characterization of nanobubbles on hydrophobic surfaces in water
Langmuir 2007; 23: 7072-7077
https://pubs.acs.org/doi/abs/10.1021/la070004i

Yount DE – On the evolution, generation and regeneration of gas cavitation nuclei
J Acoust Soc Am 1982; 65:1431-39
https://asa.scitation.org/doi/abs/10.1121/1.387845

Cardiopulmonary Effects of Diving

Cherry AD, et al. – Predictors of increasec PaCO2 during immersed prone exercise at
4.7 ATA
J Appl Physiol 2009; 106: 316-325
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00885.2007

Chouchou F, Pichot V, Garet M, Barthelemy JC, Roche F – Dominance in cardiac parasympathetic activity during real recreational SCUBA diving
Eur J Appl Physiol 2009; 106: 345-52
https://www.researchgate.net/profile/Florian_Chouchou/publication/24192798_Dominance_in_cardiac_parasympathetic_activity_during_real_recreational_SCUBA_diving/links/56005d5f08aeba1d9f84e05c/Dominance-in-cardiac-parasympathetic-activity-during-real-recreational-SCUBA-diving.pdf

Dujic, Z, Bakovic D, Marinovic-Terzic I, Eterovic D – Acute effects of a single open sea air dive and post-dive posture on cardiac output and pulmonary gas exchange in recreational divers
BJSM 2005; 39: e24
https://bjsm.bmj.com/content/39/5/e24.short

Dujic Z, Obad A, Palada I, Valic Z, Brubakk AOA single open sea air dive increases pulmonary artery pressure and reduces right ventricular function in professional divers
Europ J Appl Physiol 2006; 97(4): 478-485
https://link.springer.com/article/10.1007/s00421-006-0203-z

Fahlman A – Allometric scaling of decompression sickness risk in terrestrial mammals; cardiac output explains risk of decompression sickness
Sci Rep 2017; open access 7: 40918
https://www.nature.com/articles/srep40918

Gempp E, Blatteau JE, Drouillard I – N-Terminal pro brain natriuretic peptide increases after 1-h scuba dives at 10 m depth
Aviat Space Environ Med 2005; Vol 76: 114-116
https://hal-ssa.archives-ouvertes.fr/file/index/docid/246330/filename/PUBLICATION_N-BNP_aviat_space_environ_med_2005_gempp.pdf

Gole Y, Rossi P, Fontanari P, Gavarry O, Boussuges AArterial compliance in divers exposed to repeated hyperoxia using a rebreather equipment
Aviat Space Environ Med 2009; Vol 80, No 5, Section I
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=Arterial+compliance+in+divers+exposed+to+repeated+hyperoxia+using+a+rebreather+equipment&btnG=

Held HE, Pendergast DR – Relative effects of submersion and increased pressure on respiratory mechanics, work, and energy cost of breathing
J Appl Physiol 2013; 114: 578-591
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=-+Relative+effects+of+submersion+and+increased+pressure+on+respiratory+mechanics%2C+work%2C+and+energy+cost+of+breathing&btnG=

Marabotti C, Prediletto R, Scalzini A, Pingitore A et al – Cardiovascular and respiratory effects of the neoprene wetsuit in non-immersed divers
UHM 2017; 44: 141-147
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C10&q=Cardiovascular+and+respiratory+effects+of+the+neoprene+wetsuit+in+non-immersed+divers&btnG=

Miller JN – Physiological limits to breathing dense gas
In: Lundgren CEG, Warkander DE, eds. Physiological and human engineering aspects of
underwater breathing apparatus: proceedings of the fortieth Undersea and Hyperbaric Medical Society Workshop. Bethesda, MD: UHMS; 1989.

Moon RE, Cherry AD, Stolp BW, Camporesi EM – Pulmonary gas exchange in diving
J Appl Physiol 2009; 106: 688-677
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.91104.2008

Marinovic J, et al – Assessment of extra vascular lung water and cardiac function in trimix SCUBA diving
Med Sci Sports Exerc 2010; 42(6): 1054-61
https://europepmc.org/abstract/med/19997032

Mummery HJ, et al – Effects of age and exercise on physiological dead space during simulated dives at 2.8 ATA
J Appl Physiol 2003; 94: 507-517
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00367.2002

Pendergast DR, Lundgren CE – The underwater environment: cardiopulmonary, thermal, and energetic demands
J Appl Physiol 2008; 106: 276-283
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.90984.2008

Pendergast DR, Lundgren CE – The physiology and pathophysiology of the hyperbaric and diving environments
J Appl Physiol 2009; 106: 274-5
https://www.physiology.org/doi/full/10.1152/japplphysiol.91477.2008

Valic, Z, et al, – Diving-induced venous gas emboli do not increase pulmonary artery pressure
International J Sports Med 2005; 26: 626-631
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2004-830379

Warlander DE, Nagasawa GK, Lundgren CE – Effects of inspiratory and expiratory resistance in divers’ breathing apparatus
Undersea Hyperb Med. 2001; 28(2): 63-73
https://search.proquest.com/openview/2e45e3d2cf70cd9f89046f6eb78d4dfa/1?pq-origsite=gscholar&cbl=48053

Winklewski PJ, Kot J, Frydrychowski AF, Nuckowska MK, Tkachenko YEffects of diving and oxygen on autonomic nervous system and cerebral blood flow
Diving and Hyperb Med 2013; 43(3): 148-156
https://europepmc.org/abstract/med/24122190

Wood LD, Bryan AC – Exercise ventilator mechanics at increased ambient pressure
J Appl Physiol 1978; 44:231-237
https://www.physiology.org/doi/abs/10.1152/jappl.1978.44.2.231

CNS and Pulmonary Oxygen Toxicity

Allen BW, Demchenko IT, Paintadosi CA – Two faces of nitric oxide: implications for cellular mechanisms of oxygen toxicity
J Appl Physiol 2009; 106: 662-667
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.91109.2008

Arieli R, Yalov A, Goldenshluger A – Modeling pulmonary and CNS O2 toxicity and estimation of parameters for humans
J Appl Physiol 2002; 92: 248-256
https://www.physiology.org/doi/full/10.1152/japplphysiol.00434.2001

Arieli R, Ertracht O, Oster I, Vitenstein A, Adir Y – Effects of nitrogen and helium on CNS oxygen toxicity in the rat
J Appl Physiol 2005; 98: 144-150
https://www.physiology.org/doi/full/10.1152/japplphysiol.00506.2004

Arieli R, Arieli Y, Daskalovic Y, Eynan M, Abramovich A – CNS oxygen toxicity in closed-circuit diving: signs and symptoms before loss of consciousness
Aviat Space Environ Med 2006; 77 (5): 526-532
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.876.5330&rep=rep1&type=pdf

Arielli R, Shochat T, Adir Y – CNS toxicity in closed-circuit oxygen diving: symptoms reported from 2527 dives
Aviat Space Environ Med 2006; 77 (11): 1153-1157
https://www.ingentaconnect.com/content/asma/asem/2006/00000077/00000005/art00008

Atochin DN, Demchenko IT, Astern J, et al – Contributions of endothelial and neuronal nitric oxide synthases to cerebrovascular responses to hyperoxia
J Cereb Blood Flow Metab 2003; 23: 1219-1226
http://journals.sagepub.com/doi/pdf/10.1097/01.WCB.0000089601.87125.E4

Bitterman N, Melamed Y, Ben-Amotz A – Beta-carotene and CNS oxygen toxicity in rats
J Appl Physiol 1994; 76: 1073-1076
https://www.physiology.org/doi/abs/10.1152/jappl.1994.76.3.1073

Bitterman N, Bitterman H – L-Arginine-NO pathway and CNS oxygen toxicity
J Appl Physiol 1998; 84(5): 1633-38
https://www.physiology.org/doi/full/10.1152/jappl.1998.84.5.1633

Bitterman N – CNS Oxygen Toxicity
UHM 2004; 31(1): 63-72
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/3991/15233161.pdf?sequence=1

Bitterman N, Bitterman H – Oxygen Toxicity
Handbook on Hyperbaric Medicine, 2006 Springer, 731-765

Butler Jr. FK, Thalmann ED – Central nervous system oxygen toxicity in closed circuit scuba divers
Undersea Biomedical Research 1984-1986
http://dspace.rubicon-foundation.org:8080/xmlui/handle/123456789/3378

Chavko M, Xing GQ, Keyser DO – Increased sensitivity to seizures in repeated exposures to hyperbaric oxygen: role of NOS activation
Brain Research 2001; 900: 227-233
https://www.sciencedirect.com/science/article/pii/S0006899301023010

Chavko M, Auker CR, McCarron RM – Relationship between protein nitration and oxidation and development of hyperoxic seizures
Nitric Oxide 2003; 9: 18-23
https://www.sciencedirect.com/science/article/pii/S1089860303000454

Chen YL, Li D, Wang ZZ, Xu WG, Li RP, Zhang JD – Glutamate metabolism of astrocytes during hyperbaric oxygen exposure and its effects on central nervous system oxygen toxicity
Neuroreport 2016; 27: 73-79
https://www.ingentaconnect.com/content/wk/nerep/2016/00000027/00000002/art00003

Clark J – Extension of oxygen tolerance by interrupted exposure
UHM 2004; 31(2): 195-198
http://archive.rubicon-foundation.org/xmlui/handle/123456789/4009

Clark JM, Lambertsen CJ, Gelfand R, Troxel AB – Optimization of oxygen tolerance extension in rats by intermittent exposure
J Appl Physiol 2006; 100: 869-879
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00047.2005

D’Agostino P, Pilla R, Held HE, Landon CS, et al – Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats
Am J Phys 2013; 304(10): 829-36
https://www.physiology.org/doi/pdf/10.1152/ajpregu.00506.2012

Dean JB, Mulkey DK, Garcia III AJ, Putnam RW, Henderson III RA – Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures
J Appl Physiol 2003; 95: 883-909
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00920.2002

Demchenko IT, Boso AE, O’Neill TJ, Bennett PB, Piantadosi CA – Nitric Oxide and cerebral blood flow responses to hyperbaric oxygen
J Appl Physiol 2000; 88: 1381-89
https://www.physiology.org/doi/full/10.1152/jappl.2000.88.4.1381

Demchenko IT, Boso AE, Bennett PB, Whorton AR, Piantadosi CA – Hyperbaric Oxygen Reduces Cerebral Blood Flow by Inactivating Nitric Oxide
Nitric Oxide 2000; 4(6): 597-608
https://www.sciencedirect.com/science/article/pii/S1089860300903136

Demchenko IT, Boso AE, Whorton AR, Paintadosi CA – Nitric oxide production is enhanced in rat brain before oxygen-induced convulsions
Brain Res 2001; 917 (2): 253-261
https://www.sciencedirect.com/science/article/pii/S0006899301030578

Demchenko IT, Oury TD, Crapo JD, Piantadosi CA – Regulation of the brain’s vascular responses to oxygen
Circ Res 2002; 91: 1031-1037
https://pdfs.semanticscholar.org/9daf/c683b9c2909a35ea7b344b7af587e3128848.pdf

Demchenko IT, Atochin DN, Boso AE, Astern J, Huan PL, Piantadosi CA – Oxygen seizure latency and peroxynitrite formation in mice lacking neuronal or endothelial nitric oxide synthases
Neuroscience Letters 2003; 344: 53-56
https://www.sciencedirect.com/science/article/abs/pii/S0304394003004324

Demchenko IT, Luchakov YI, Moskvin AN – Cerebral blood flow and brain oxygenation in rats breathing oxygen under pressure
J Cereb Blood Flow Metab 2005; 25: 1288-1300
http://journals.sagepub.com/doi/pdf/10.1038/sj.jcbfm.9600110

Demchenko IT, Piantadosi CA – Nitric oxide amplifies the excitatory to inhibitory neurotransmitter imbalance accelerating oxygen seizures
UHM 2006; 33: 169-174
http://dspace.rubicon-foundation.org:8080/xmlui/handle/123456789/5056

Demchenko IT, Atochin DN, Suliman HB, Tatro L, Allen BA Huang PL, Piantadosi CA – Neuronal NOS and Glutamate decarboxylase S-nitrosylation before oxygen seizures
UHM 2007 Abstract
http://dspace.rubicon-foundation.org:8080/xmlui/handle/123456789/5208

Demchenko IT, Welty-Wolf KE, Allen BW, Piantadosi CA – Similar but not the same: normobaric and hyperbaric pulmonary oxygen toxicity, the role of nitric oxide
Am J Physiol Lung Cell Mol Physiol 2007; L229-L238
https://www.physiology.org/doi/pdf/10.1152/ajplung.00450.2006

Demchenko IT, Zhilyaev SY, Moskvin AN, Piantadosi CA, Allen BW – Autonomic activation links CNS oxygen toxicity to acute cardiogenic pulmonary injury
J Appl Phys 2011; 300: L102-111
https://www.physiology.org/doi/pdf/10.1152/ajplung.00178.2010

Demchenko IT , Moskvin AN, Krivchenko AI, Piantadosi CA, Allen BW- Nitric oxide-mediated central sympathetic excitation promotes CNS and pulmonary O2 toxicity
J Appl Phys 2012; 112: 1814-23
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00902.2011

Demchenko IT, Mahon RT, Allen BW, Piantadosi CA – Brain oxygenation and CNS toxicity after infusion of perfuorocarbon emulsion
J Appl Phys 2012: 113: 224-241
https://www.physiology.org/doi/full/10.1152/japplphysiol.00308.2012

Demchenko IT, Gasier HG, Zhilyaev SY, et al. – Baroreceptor afferents modulate brain excitation and influences susceptibility to toxic effects of hyperbaric oxygen
J Appl Phys 2014; 117: 525-534
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00435.2014

Demchenko IT, Zhilyaev SY, Moskvin AN, Krivchenko AI, Piantadosi CA, Allen BW – Antiepileptic drugs prevent seizures in hyperbaric oxygen: A novel model of epileptiform activity
Brain Research 2017; 1657: 347-354
https://www.sciencedirect.com/science/article/pii/S0006899316308617

Elayan IM, Axley MJ, Prasad PV, Ahlers ST, Auker CR – Effect of hyperbaric oxygen treatment on nitric oxide and oxygen free radicals in rat brain
Neurophysiol 2000; 83: 2022-2029
https://www.physiology.org/doi/full/10.1152/jn.2000.83.4.2022

Gasier H, Tatro L, Demchenko I, Suliman H, Piantadosi C – S-Nitrosoglutathione reductase null mice display increased brain glutamic acid decarboxylase activity and seizure resistance in hyperbaric oxygen
Faseb J 2015; 29: sup
https://www.fasebj.org/doi/abs/10.1096/fasebj.29.1_supplement.678.14

Gasier HG, Demchenko IT, Tatro LG, Piantadosi CA – S-nitrosylation of GAD65 is implicated in decreased GAD activity and oxygen-induced seizures
Neuroscience Letters 2017; 653: 283-287
https://www.sciencedirect.com/science/article/abs/pii/S0304394017304731

Gutteridge JM, Halliwell B – Free radicals and antioxidants in the year 2000. A historical look to the future
Ann NY Acad Sci 2000; 899: 136-147
http://woodlab.ucdavis.edu/ETX214/Halliwell_ROS_Review.pdf

Fock A, Harris R, Slade M – Oxygen exposure and toxicity in recreational technical divers
Diving and Hyperb Med 2013; 43: 67-71
http://www.eubs.org/documents/DHM%20vol43%20no2.pdf#page=9

Hagioka S, Takeda Y, Zhang S, Sato T, Morita K – Effects of 7-nitroindazole and N-nitro-l-arginine methyl ester on changes in cerebral blood flow and nitric oxide production preceding development of hyperbaric oxygen-induced seizures in rats
Neuroscience Letters 2005; 382: 206-210
https://www.sciencedirect.com/science/article/abs/pii/S0304394005000273

Liu S, Li R, Ni X, Cai Z, Zhang R, Sun X, Quock R, Xu W – Perfluorocarbon-facilitated CNS toxicity in rats: Reversal by edaravone
Brain Research 2012; 1471: 56-65
https://www.sciencedirect.com/science/article/pii/S0006899312011377

Martinc B, Grabnar I, Tomaz V – The role of reactive species in epileptogenesis and influence of antiepileptic drug therapy on oxidative stress
Curr Neuropharmacol 2012; 10: 328-343
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3520043/

Matalon S, Hardiman KM, Jain L, Eaton DC et al – Regulation of ion channel structure and function by reactive oxygen-nitrogen species
Am J Physiol – Lung Cell Mol Physiol 2003; 285: 1184-1189
https://www.physiology.org/doi/full/10.1152/ajplung.00281.2003

Micarelli A, Jacobsson H, Larsson SA, Jonsson C, Pagani M – Neurobiological insight into hyperbaric hyperoxia
Acta Physiol 2013; 209: 69-76
https://pdfs.semanticscholar.org/7a38/acc5483f8f9f8be3b5ce514a75eaa7a54c57.pdf

Oury TD, Ho YS, Piantadosi CA, Crapo JD – Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity
PNAS 1992; 89: 9715-19
http://www.pnas.org/content/pnas/89/20/9715.full.pdf

Thom SR, Bhopale V, Fisher D, Manevich Y, Huang PL, Buerk DG – Stimulation of nitric oxide synthase in cerebral cortex due to elevated partial pressures of oxygen: an oxidative stress response
Develop Neurobio 2002; 51: 85-100
https://onlinelibrary.wiley.com/doi/abs/10.1002/neu.10044

Thom SR, Fisher D, Zhang J, et al – Stimulation of perivascular nitric oxide synthesis by oxygen
Am J Physiol Heart Circ Physiol 2003; 284: H1230-H1230
https://www.physiology.org/doi/pdf/10.1152/ajpheart.01043.2002

Winklewski PJ, Kot J, Frydrychowski AF, Nuckowska MK, Tkachenko Y – Effects of diving and oxygen on autonomic nervous system and cerebral blood flow
Diving and Hyperbaric Medicine 2013; 43(3): 148-156
https://europepmc.org/abstract/med/24122190

Zhilyaev SY, et al – Hyperoxic vasoconstriction in the brain is mediated by inactivation of nitric oxide by superoxide anions
Neuroscience and Behavioral Physiology 2003, 33(8): 783-87
https://link.springer.com/article/10.1023/A:1025145331149

DCS – Adaptability/Acclimation

Lambrechts K, Pontier JM, Mazur A, Buzzacott P, Morin J et al – Effect of decompression-induced bubble formation on highly trained divers microvascular function
Physiol Rep 2013; 1 (6) 1-10
https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1002/phy2.142

Montcalm-Smith EA, et al – Acclimation to decompression sickness in rats
J Appl Physio 2010; 108 (3): 596-603
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00596.2009

Pontier JM, et al – Bubble formation and endothelial function before and after 3 months of dive training
Aviat Space Environ Med 2009; 80:15-9
https://pdfs.semanticscholar.org/a7c7/1ca28561ed98a0999597f55873296637e636.pdf

Sayer MDJ, Akroyd J, Williams GD – Comparative incidence of decompression illness in repetitive, staged, mixed-gas decompression diving: is ‘dive fitness’ an influencing factor?
Diving Hyperb Med 2008; 38: 62-67
https://www.researchgate.net/profile/Neal_Pollock/publication/225301265_Breath-hold_diving_Performance_and_safety/links/0a85e530e2c8082259000000/Breath-hold-diving-Performance-and-safety.pdf#page=4

Su CL, et al – Acclimatization to neurological decompression sickness in rabbits
Am J Physiol Regul Integr Comp Physiol 2004; 287: 1214-8
https://www.physiology.org/doi/full/10.1152/ajpregu.00260.2004

Zanchi J, Ljubkovic M, Denoble PJ, Dujic Z, Ranapurwala S, Pollock NW – Influence of repeated daily diving on decompression stress
Int J Sports Med 2013; 34:1-4
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0033-1334968

DCS – Antioxidant

Christmas BC, et al– Acute antioxidant pre-treatment attenuates endothelial microparticle release after decompression
Diving and Hyperbaric Medicine, 2010; 40: 184-8
http://dspace.rubiconfoundation.org/xmlui/bitstream/handle/123456789/10219/DHM_V40N4_4.pdf?sequence=1

Deb SK, Swinton PA, Dolan E – Nutritional considerations during prolonged exposure to a confined, hyperbaric, hyperoxic environment: recommendations for saturation divers
Extr Physiol & Med 2016: 5:1
https://extremephysiolmed.biomedcentral.com/articles/10.1186/s13728-015-0042-9

Mak S, Egri Z, Tanna G, Colman R, Newton GEVitamin C prevents hyperoxia-mediated vasoconstriction and impairment of endothelium-dependent vasodilation
Am J Physiol Heart Circ Physiol 2002; 282: H2414-21
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.885.9404&rep=rep1&type=pdf

Obad A, et al –  The effects of acute oral antioxidants on diving-induced alterations in human cardiovascular function
J Physiol 2007; 578: 859-870
https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.2006.122218

Obad A, et al – Antioxidant pretreatment and reduced art endothelial dysfunction after diving
Av Space Env Med 2007; 78:1114-1120
http://www.academia.edu/download/42278032/Antioxidant_Pretreatment_and_Reduced_Art20160207-29585-japp9j.pdf

Yang M, Barak OF, Dujic Z, Madden D, Bhopale VM, Bhullar J, Thom SR – Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving
Am J Physiol Regu 2015; 309: 338-344
https://www.physiology.org/doi/full/10.1152/ajpregu.00155.2015

Yang M, Bhopale VM, Thom SR – Ascorbic acid abrogates microparticle generation and vascular injuries associated with high-pressure exposure
J Appl Physiol 2015; 119: 77-82
https://www.physiology.org/doi/full/10.1152/japplphysiol.00183.2015

DCS – Asymptomatic High Grade Bubbles

Bakovic D, et al – High-grade bubbles in left and right heart in an asymptomatic diver at rest after surfacing
Aviat Space Environ Med 2008; 79: 626-8
https://www.ingentaconnect.com/content/asma/asem/2008/00000079/00000006/art00012

Ljubkovic M, et al – High incidence of venous and arterial gas emboli at rest after trimix diving without protocol violations
J Appl Physiol 2010; 109: 1670-4
https://www.physiology.org/doi/full/10.1152/japplphysiol.01369.2009

Ljubkovic M, et al – Venous and arterial bubbles at rest after no-decompression air dives
Med Sci Sports Exerc 2011; 43: 990-5
https://europepmc.org/abstract/med/21085032

DCS – Biochemical Marker/Microparticles

Bhullar J, Bhopale VM, Yang M, Sethuraman K, Thom SR – Microparticle formation by platelets exposed to high gas pressures – An oxidative stress response
Free Radical Biol & Med 2016; 101: 154-162
https://www.sciencedirect.com/science/article/pii/S0891584916304518

Eftedal I, Ljubkovic M, Flatberg A, Jorgensen A, Brubakk AO, Djuic Z – Acute and potentially persistent effects of scuba diving on the blood transcriptome of experienced divers
Physiol Genomics 2013; 45: 965-72
https://www.physiology.org/doi/pdf/10.1152/physiolgenomics.00164.2012

Gempp E, DeMaistre S, Louge P – Serum Albumin as a Biomarker of Capillary Leak in Scuba Divers with Neurological Decompression Sickness
Aviat Space Environ Med 2014; 85 (10): 1049-52
https://www.researchgate.net/profile/Emmanuel_Gempp2/publication/265969466_Serum_Albumin_as_a_Biomarker_of_Capillary_Leak_in_Scuba_Divers_with_Neurological_Decompression_Sickness/links/57fa56db08ae886b89861a76/Serum-Albumin-as-a-Biomarker-of-Capillary-Leak-in-Scuba-Divers-with-Neurological-Decompression-Sickness.pdf

Havnes MB, Hjelde A, Brubakk AO, Mollerlokken A – S100B and its relation to intravascular bubbles following decompression
Diving and Hyperbaric Med 2010; 40: 210-212
http://archive.rubicon-foundation.org/xmlui/bitstream/handle/123456789/10229/DHM_V40N4_9.pdf?sequence=1

Madden D, Thom SR, Yang M, Bhopale VM, Ljubkovic M, Dujic Z – High intensity cycling before SCUBA diving reduces post-decompression microparticle production and neutrophil activation
Eur J Appl Physiol 2014; 114: 1955-61
https://link.springer.com/article/10.1007/s00421-014-2925-7

Madden LA, et al – Endothelial microparticles in vascular disease and as a potential marker of decompression illness
Diving and Hyperbaric Medicine 2007; 37: 156-61
http://dspace.rubicon-foundation.org:8080/xmlui/bitstream/handle/123456789/9692/DHM_V37N3_9.pdf?sequence=1

Madden LA, Laden G – Endothelial Function and stress response after simulated dives to 18 msw breathing air or oxygen
Aviat Space Environ Med 2010; 81: 41-5
https://www.ingentaconnect.com/content/asma/asem/2010/00000081/00000001/art00007

Madden D, Thom SR, Milovanova TN, Yang M, Phopale VM, Ljubkovic M, Dujic Z – Exercise before SCUBA diving ameliorates decompression-induced neutrophil activation
Med Sci Sports Exerc 2014; 46:1928-1935
https://europepmc.org/abstract/med/24576865

Madden D, Thom SR, Dujik Z – Exercise before and after SCUBA diving and the role of cellular microparticles in decompression stress
Medical Hypotheses 2016; 86: 80-84
https://www.sciencedirect.com/science/article/pii/S0306987715004600

Madden D, Barak O, Thom SR, Yang M, Bhopale VM, Ljubkovic M, Dujic Z – The impact of predive exercise on repetitive SCUBA diving
Clin Physiol Funct Imaging 2016; 36: 197-205
https://onlinelibrary.wiley.com/doi/abs/10.1111/cpf.12213

Montcalm-Smith E, Caviness J, Chen Y, McCarron RM – Stress biomarkers in a rat model of decompression sickness
Aviat Space Environ Med 2007; 78(2): 87-93
https://www.ingentaconnect.com/content/asma/asem/2007/00000078/00000002/art00002

Nyquist P, Ball R, Sheridan MJ – Complement levels before and after dives with a high risk of DCS
UHM 2007; 34:191-197
http://dspace.rubicon-foundation.org:8080/xmlui/bitstream/handle/123456789/7349/17672175.pdf?sequence=1

Pontier JM, Blatteau JE, Vallee N – Blood platelet count and severity of decompression sickness in rats after a provocative dive
Aviat Space Environ Med 2008; 79 (12): 761-764
https://www.ingentaconnect.com/content/asma/asem/2008/00000079/00000008/art00005

Pontier JM, Jimenez C, Blatteau JE – Blood platelet count and bubble formation after a dive to 30 msw for 30 min
Aviat Space Environ Med 2008; 79 (12): 1096-1099
https://www.ingentaconnect.com/content/asma/asem/2008/00000079/00000012/art00004

Pontier JM, Vallee N, Ignatescu M, Bourdon L – Pharmacological intervention against bubble-induced platelet aggregation in a rat model of decompression sickness
J Appl Physiol 2011; 110: 724-729
https://www.physiology.org/doi/full/10.1152/japplphysiol.00230.2010

Pontier JM, Gempp E, Ignatescu M – Blood platelet-derived microparticles release and bubble formation after an open-sea air dive
Appl Physiol Nutr Metab 2012; 37: 888-892
http://www.nrcresearchpress.com/doi/abs/10.1139/h2012-067#.W52GIC2ZNQI

Pontier JM, Lambrechts K – Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive
Eu J of Appl Physiol 2014; 114: 1175-1181
https://www.researchgate.net/profile/Kate_Lambrechts/publication/260375757_Effect_of_oxygen-breathing_during_a_decompression-stop_on_bubble-induced_platelet_activation_after_an_open-sea_air_dive_Oxygen-stop_decompression/links/0c96053121d89a502a000000.pdf

Thom RS, Yang M, Bhopale VM, Huang S, Milovanova TNMicroparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries
J Appl Physiol 2011; 110: 340-351
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00811.2010

Thom SR, et al – Microparticle production, neutrophil activation, and intravascular bubbles following open-water SCUBA diving
J Appl Physiol 2012; 112: 1268-78
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01305.2011

Thom SR, et al – Bubbles, microparticles, and neutrophil activation: changes with exercise level and breathing gas during open-water SCUBA diving
J Appl Physiol 2013; 114: 1396-1405
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00106.2013

Thom SR, et al – Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury
J Appl Physiol 2013; 114(5): 550-558
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01386.2012

Thom SR,  Bhopale VM, Yang M – Neutrophils generate microparticles during exposure to inert gases due to cytoskeletal oxidative stress
J Bio Chem 2014;
http://www.jbc.org/content/early/2014/05/27/jbc.M113.543702.full.pdf

Thom SR, Bennett M, Banham ND, Chin W et al – Association of microparticles and neutrophil activation with decompression sickness
J Appl Physiol 2015;
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00380.2015

Tyrell JW, Attard P – Images of nanobubbles on hydrophobic surfaces and their interactions
Phys Rev Lett 2001; open access 87:176104
http://personal.chem.usyd.edu.au/Phil.Attard/a72/nano.pdf

Vallee N, Gaillard S, Peinnequin A, Risso JJ, Blatteau JE – Evidence of cell damages caused by circulating bubbles: high level of free mitochondrial DNA in plasma of rats
J Appl Physiol 2013; 115: 1526-1532
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00025.2013

Vince RV, et al – Release of VAM-1 associated endothelial microparticles following simulated SCUBA dives
Eur J Appl Physiol 2009; 105: 507-513
https://www.researchgate.net/profile/Lee_Taylor2/publication/23467152_Release_of_VCAM-1_associated_endothelial_microparticles_following_simulated_SCUBA_dives/links/545915030cf2bccc4912b551.pdf

Ward CA, McCullough D, Fraser WD  – Relation between complement activation and susceptibility to decompression sickness.
J Appl Physiol 1987; 62: 1160-6
https://www.physiology.org/doi/abs/10.1152/jappl.1987.62.3.1160

Wejis JH, Snoeijer JH, Lohse D – Formation of surface nanobubbles and the universality of their contact angles: a  molecular dynamics approach
Phys Rev Lett 2012; 108: 10450
https://arxiv.org/pdf/1109.3060

Wejis JG, Lohse D – Why surface nanobubbles life for hours
Phys Rev Lett 2013; open access
https://arxiv.org/pdf/1210.3484

Yang M, Milovanova TN, Bogush M, Uzun G, et al – Microparticle enlargement and altered surface proteins after air decompression are associated with inflammatory vascular injuries
J Appl Physiol 2012; 112: 204-211
https://www.physiology.org/doi/full/10.1152/japplphysiol.00953.2011

Yang M, Barak OF, Dujic Z, Madden D, Bhopale VM, Bhullar J, Thom SR – Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving
Am J Physiol Regu 2015; 309: 338-344
https://www.physiology.org/doi/full/10.1152/ajpregu.00155.2015

Yang M, Bhopale VM, Thom SR – Separating the roles of nitrogen and oxygen in high pressure-induced blood-borne microparticle elevations, neutrophil activation, and vascular injury in mice
J Appl Physiol 2015; 119: 219-222
https://www.physiology.org/doi/full/10.1152/japplphysiol.00384.2015

Yang M, Bhopale VM, Thom SR – Ascorbic acid abrogates microparticle generation and vascular injuries associated with high-pressure exposure
J Appl Physiol 2015; 119: 77-82
https://www.physiology.org/doi/full/10.1152/japplphysiol.00183.2015

DCS – Body Fat, Age, Fitness, Diet

Bosco G, Paoli A, Camporesi E – Aerobic demand and scuba diving: concerns about medical evaluation.
Diving and Hyperbaric Med 2014; 44 (2): 61-63
https://www.eubs.org/documents/DHM%20Vol44%20No2.pdf#page=3

Buzzacott P, Pollock NW, Rosenberg M – Exercise intensity inferred from air consumption during recreational scuba diving
Diving and Hyerbaric Med 2014; 44 (2): 74-78
https://www.researchgate.net/profile/Peter_Buzzacott/publication/263713100_Exercise_intensity_inferred_from_air_consumption_during_recreational_scuba_diving/links/570906bb08ae2eb9421e2987.pdf

Buzzacott P, Theron M, Mazur A, Wang Q, Lambrechts K et al. – Age, weight and decompression sickness in rats
Arch Physiol Biochem 2016; 122: 67-69
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2458998/Age%2C+weight+and+decompression+sickness.pdf?sequence=2

Byrne NM, Hills AP, Hunter GR, Weinsier RL, Schutz Y – Metabolic equivalent: one size does not fit all
J Appl Physiol 2005; 99: 1112-19
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00023.2004

Cameron BA, Olstad CS, Clark JM, Gelfand EO et al – Risk factors for venous gas emboli after decompression from prolonged hyperbaric exposures
Aviat Space Environ Med 2007; 78: 493-499
https://www.ingentaconnect.com/content/asma/asem/2007/00000078/00000005/art00006

Carturan D, Boussuges A, Burnet H, Fondarai J, Vanuxem P, Gardette B – Circulating venous bubbles in recreational diving: relationships with age, weight, maximal oxygen uptake and body fat percentage
Int J Sports Med 1999; 20: 410-14
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2007-971154

Carturan D, et al – Ascent rate, age, maximal oxygen uptake, adiposity, and circulating venous bubbles after diving
J Appl Physiol 2002; 93: 1349-56
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00723.1999

Conkin J, Powell MR, Gernhardt ML – Age affects severity of venous gas emboli on decompression from 14.7 to 4.3 psia
Aviat Space Environ Med 2003; 74: 1142-50
https://www.researchgate.net/profile/Johnny_Conkin/publication/9007216_Age_Affects_Severity_of_Venous_Gas_Emboli_on_Decompression_from_147_to_4_3_psia/links/5589447708ae6d4f27ea4383/Age-Affects-Severity-of-Venous-Gas-Emboli-on-Decompression-from-147-to-4-3-psia.pdf

Dunford RG, Vann RD, Gerth WA, Pieper CF, Huggins K, Wacholtz C et al – The incidence of venous gas emboli in recreational diving
Undersea Hyperb Med 2002; 29: 247-259
http://dspace.rubicon-foundation.org:8080/xmlui/bitstream/handle/123456789/3773/12797666.pdf?sequence=1

Mazur A, Buzzacott P, Lambrechts K, et al – Different effect of L-NAME treatment on susceptibility to decompression sickness in male and female rats
Appl Phys, Nutr, and Metab 2014; 39 (11): 1280-85
http://www.nrcresearchpress.com/doi/abs/10.1139/apnm-2014-0148#.W52JFy2ZNQI

Schellart NAM, Vellinga TP, van Dijk FJ, Sterk W  – Doppler bubble grades after diving and relevance of body fat
Aviat Space Environ Med 2012; 83 (10): 951-957
http://www.duikresearch.org/download/Publicaties/1.%20Artikelen/Doppler%20Bubble%20Grades.pdf

Schellart NAM, van Rees TP, van Hulst RA – Body fat does not affect venous bubble formation after air dives of moderate severity: theory and experiment
J Appl Physiol 2013; 114: 602-610
https://www.physiology.org/doi/full/10.1152/japplphysiol.00949.2012

Schellart NAM, Nico AM – Free fatty acids do not influence venous gas embolism in divers
Aviat Space Environ Med 2014; 85 (11): 1086-91
http://www.diveresearch.org/download/Publicaties/1.%20Free%20fatty%20Acids%20do%20not%20influence.pdf

Schellart N, Rozloznik M, Balestra C – Relationships between plasma lipids, proteins, surface tension and post-dive bubbles
UHM 2015; 42: 133-141
http://www.academia.edu/download/45488057/Relationships_between_plasma_lipids_prot20160509-19095-1an0lr.pdf

DCS – Endothelial Dysfunction, Nitric Oxide

Blatteau JE, Brubakk AO, Gempp E, Castagna O, Risso JJ, Vallee N – Sidenafil pre-treatment promotes decompression sickness in rats
PLoS ONE 2013, 8(4): e60639. doi:10.1371/journal.pone.0060639
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060639

Brubakk AO, et al – A single air dive reduces arterial endothelial function in man
J Physiol 2005; 566:901-6
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2005.089862

Brubakk AO, Møllerløkken AThe role of intra-vascular bubbles and the vascular endothelium in decompression sickness – review
Diving and Hyperbaric Medicine 2009; 39:162-9
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/9345/DHM_V39N3_5.pdf?sequence=1

Cockcroft JR – Exploring vascular benefits of endothelium-derived nitric oxide
Am J Hypertens 2005; 18: 177S-183S
https://academic.oup.com/ajh/article-pdf/18/S6/177S/529890/18_S6_177S.pdf

Dujic Z, et al – Exogenous nitric oxide and bubble formation in divers
Med. Sci. Sports Exerc., 2006; 38: 1432-5
http://www.academia.edu/download/42599122/Exogenous_nitric_oxide_and_bubble_format20160211-25488-121xluf.pdf

Duplessis CA, Fothergill D, Schwaller D, Hughes L, Gertner J  – Prophylactic statins as a possible method to decrease bubble formation in diving
Aviat Space Environ Med 2007; 78: 430-4
https://www.ingentaconnect.com/content/asma/asem/2007/00000078/00000004/art00013

Duplessis CA, Fothergill G – Investigating the potential of statin medications as a nitric oxide (NO) release agent to decrease decompression sickness: A review article
Medical Hypothesis 2008; 70:560-566
https://www.sciencedirect.com/science/article/pii/S0306987707004380

Flammer AJ, Herman F, Sudano I, Spieker L, Hermann M, et al. – Dark chocolate improves coronary vasomotion and reduces platelet reactivity
Circulation 2007; 116: 2376-2382
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.564.9067&rep=rep1&type=pdf

Germonpre P, Balestra C – Preconditioning to reduce decompression stress in scuba divers
Aerospace Med Hum Perfor 2017; 88: 114-120
https://www.researchgate.net/profile/Costantino_Balestra/publication/313147281_Preconditioning_to_Reduce_Decompression_Stress_in_Scuba_Divers/links/5ac1cfa0a6fdcccda65df538/Preconditioning-to-Reduce-Decompression-Stress-in-Scuba-Divers.pdf

Glavas D, Markotic A, Valic Z, et al – Expression of endothelial selectin ligands on human leukocytes following dive
Exp Biol Med 2008; 233: 1181-1188
https://www.researchgate.net/profile/Natasa_Kovacic/publication/5320760_Expression_of_Endothelial_SelectinLigands_on_Human_Leukocytes_Following_Dive/links/0c960522ff07538d44000000.pdf

Harris MB, Blackstone MA, Ju H, Venema VJ, Venema RCHeat-induced increases in endothelial NO synthase expression and activity and endothelial NO release
Am J Physiol Heart Circ Physiol 2003; 285: 333-40
https://www.researchgate.net/profile/M_Brennan_Harris/publication/10833253_Heat-induced_increases_in_endothelial_NO_synthase_expression_and_activity_and_endothelial_NO_release/links/576e80f208ae842225a87fb0.pdf

Higashi Y, Yoshizumi MExercise and endothelial function: role of endothelium-derived Nitric oxide and oxidative stress in healthy subjects and hypertensive patients
Pharmacol Ther 2004; 24:1-34
https://www.sciencedirect.com/science/article/pii/S0163725804000233

Lambrechts K, et al – Effect of a single, open-sea, air scuba dive on human micro- and macrovascular function
Eur J Appl Physiol 2013; 113: 2637-45
http://www.academia.edu/download/44158958/Effect_of_a_single_open_sea_air_scuba_di20160327-12208-hgp909.pdf

Lambrechts K, Pontier JM, Mazur A, Buzzacott P, Morin J et al – Effect of decompression-induced bubble formation on highly trained divers microvascular function
Physiol Rep 2013; 1 (6) 1-10
https://onlinelibrary.wiley.com/doi/pdf/10.1002/phy2.142

Lambrechts K, Balestra C, Theron M, Henckes A et al – Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction
Eur J Appl Physiol 2017; 117: 335-344
https://link.springer.com/article/10.1007/s00421-017-3537-9

Nossum V, Hjelde A, Brubakk AO – Small amounts of venous gas embolism cause delayed impairment of endothelial function and increase polymorphonuclear neutrophil infiltration
Eur J Appl Physiol 2002; 86: 209-214
https://www.researchgate.net/profile/Astrid_Hjelde/publication/11379062_Small_amounts_of_venous_gas_embolism_cause_delayed_impairment_of_endothelial_function_and_increase_polymorphonuclear_neutrophil_infiltration/links/0912f50d0b6006544a000000.pdf

Madden LA, Laden G – Endothelial microparticles in vascular disease and as a potential marker of decompression illness
Diving and Hyperbaric Medicine 2007; 37: 156-61
http://dspace.rubicon-foundation.org:8080/xmlui/bitstream/handle/123456789/9692/DHM_V37N3_9.pdf?sequence=1

Madden LA, Laden G – Gas bubbles may not be the underlying cause of deco illness – the at-depth endothelial dysfunction hypothesis
Med Hypoth 2009; 32(4): 384-92
http://www.academia.edu/download/45723039/j.mehy.2008.11.02220160517-5983-374xtu.pdf

Madden LA, et al – Endothelial function and stress response after simulated dives to 18 msw breathing air or oxygen
Aviat Space Environ Med 2010; 81: 41-5
https://www.ingentaconnect.com/content/asma/asem/2010/00000081/00000001/art00007

Marinovic J, ljubkovic M, Breskovic T, Gunjaca G, Obad A et al – Effects of successive air and nitrox dives on human vascular function
Eur J Appl Physiol 2012; 112: 2131-2137
https://www.researchgate.net/profile/Grgo_Gunjaca/publication/51688425_EVects_of_successive_air_and_nitrox_dives_on_human_vascular_function/links/0c96052d3bfd7f2964000000/EVects-of-successive-air-and-nitrox-dives-on-human-vascular-function.pdf

Mazur A, Buzzacott P, Lambrechts K, et al – Different effect of L-NAME treatment on susceptibility to decompression sickness in male and female rats
Appl Phys, Nutr, and Metab 2014; 39 (11): 1280-85
http://www.nrcresearchpress.com/doi/abs/10.1139/apnm-2014-0148#.W52L1i2ZNQI

Mazur A, Lambrechts K, Wang Q, Belhomme M, Theron M, Buzzacott P, Guerrero F – Influence of decompression sickness on vasocontraction of isolated rat vessel
J Appl Physiol 2016; 120:784-791
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00139.2015

McMahon TJ, et al – Nitric oxide in the human respiratory cycle
Nature Medicine 2002; 8:711-717
http://www.academia.edu/download/44369296/Nitric_oxide_in_the_human_respiratory_cy20160403-28685-19emzgj.pdf

Møllerløkken A, Berge VJ, Jørgensen A, Wisløff U, Brubakk AO  – Effect of a short-acting NO donor on bubble formation from a saturation dive in pigs
J Appl Physiol 2006; 101: 1541-5
https://www.physiology.org/doi/full/10.1152/japplphysiol.01191.2005

Mollerlokken A, Gaustad SE, Havnes MB – Venous gas embolism as a predictive tool for improving CNS decompression safety
Eur J Appl Physiol 2012; 112:401-9
https://link.springer.com/article/10.1007/s00421-011-1998-9

Nossum V, Koteng S, Brubakk AO. – Endothelial damage by bubbles in the pulmonary artery of the pig
UHM 1999; 26:1-8
https://search.proquest.com/openview/7fb5445d9ccf87b2a9591baeaeaabad4/1?pq-origsite=gscholar&cbl=48053

Obad A, Valic Z, Palada I, Brubakk AO, Modun D, Dujic Z  – Antioxidant pretreatment and reduced arterial endothelial dysfunction after diving
Av Space Env Med 2007; 78:1114-1120
http://www.academia.edu/download/42278032/Antioxidant_Pretreatment_and_Reduced_Art20160207-29585-japp9j.pdf

Obad A, Marinovic J, Ljubkovic M, Breskovic T, Modun D, et al – Successive deep dives impair endothelial function and enhance oxidative stress in man
Clin Physiol Funct Imaging 2010; 30; 432-8
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-097X.2010.00962.x

Pontier JM, Guerrero F, Castagna OBubble formation and endothelial function before and after 3 months of dive training
Aviat Space Environ Med 2009; 80:15-9
https://pdfs.semanticscholar.org/a7c7/1ca28561ed98a0999597f55873296637e636.pdf

Sureda A, Ferrer MD, Batle JM, Tauler P, Tur JA, Pons A – Scuba diving increases erythrocyte and plasma antioxidant defenses and spares NO without oxidative damage
Med Sci Sports Exerc 2009; 41: 1271-6
https://www.researchgate.net/profile/Josep_A_Tur/publication/268366559_Scuba_Diving_Increases_Erythrocyte_and_Plasma_Antioxidant_Defenses_and_Spares_NO_without_Oxidative_AQ1_Damage_Diving_Increases_Erythrocyte_and_Plasma_Antioxidant_Defenses_and_Spares_NO_without_Oxidati/links/54e704590cf2cd2e0290fc59/Scuba-Diving-Increases-Erythrocyte-and-Plasma-Antioxidant-Defenses-and-Spares-NO-without-Oxidative-AQ1-Damage-Diving-Increases-Erythrocyte-and-Plasma-Antioxidant-Defenses-and-Spares-NO-without-Oxidati.pdf

Sureda A, Batle JM, Ferrer MD, Mestre-Alfaro A, Tur JA, Pons A – Scuba diving activates vascular antioxidant system
Int J Sports Med 2012; 33: 531-6
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0031-1297957

Theron M, Wang Q, Lambrechts K, Mazur A, Buzzacott P, Guerrero F – ROS production from endothelial cells during in vitro simulated dives: effects of hydrostatic and gas pressures
FASEB J 2015; 29: supp
https://www.fasebj.org/doi/abs/10.1096/fasebj.29.1_supplement.678.11

Theunissen S, Guerrero F, Sponsiello N, Cialoni D, Pieri M, Germonpre P, et al – Nitric oxide-related endothelial changes in breath-hold and scuba divers
Undersea Hyperb Med 2013; 40: 135-144
https://www.researchgate.net/profile/Costantino_Balestra/publication/281845477_UHM_2013_Endothelium_SIGRID/links/55fafbbb08ae07629e07b725.pdf

Theunissen S, Schumacker J, Guerrero F, Tillmans F, Boutros A, et al. – Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water
Eur J Appl Physiol 2013; 113: 2967-75
http://www.academia.edu/download/39695597/Dark_chocolate_reduces_endothelial_dysfu20151104-12880-c8dxpm.pdf

Theunissen S, Balestra C, Boutros A, De Bels D, Guerrero F, Germonpre P – The effect of pre-dive ingestion of dark chocolate on endothelial function after a scuba dive
Diving and Hyperb Med 2015; 45:4-9
https://www.eubs.org/documents/DHMJOURNAL%20Vol45%20No1_secure.pdf#page=6

Valic Z, Palada I, Dujic Z – Short-acting NO donor and decompression sickness in humans
J Appl Physiol 2007; 102: 1541-1545
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01363.2006

Vural KM, Oz MCEndothelial adhesivity, pulmonary hemodynamics and nitric oxide synthesis in ischemia-reperfusion
Eur J Cardiothorac Surg 2000; 18: 248-52
https://academic.oup.com/ejcts/article/18/3/348/473862

Wang-Polagruto JF, Villablanca AC, Polagruto JA, Leel, Holt RR, et al. – Chronic consumption of flavanol-rich cocoa improves endothelial function and decreases vascular cell adhesion molecule in hypercholesterolemic postmenopausal women
J Cardiovasc Pharmacol 2006; 47 (Suppl 2): S177-186
http://www.academia.edu/download/42409565/Wang-Polagruto_JF_Villablanca_AC_Polagru20160208-29954-hym40u.pdf

Wisløff U, Richardson RS, Brubakk AONOS inhibition increases bubble formation and reduces survival in sedentary but not exercised rats
J Physiol 2003; 577-82
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2002.030338

Wisløff U, Richardson RS, Brubakk AOExercise and nitric oxide prevent bubble formation: a novel approach to the prevention of decompression sickness?
J Physiol 2004; 825-9
https://onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2003.055467

Yu X, Xu J, Huang G, Zhang K, Qing L, Liu W, Xu W – Bubble-induced endothelial microparticles promote endothelial dysfunction
PLoS ONE 2017 Open access
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168881

Zhang K, Wang D, Jiang Z, Ning X, Buzzacott P, Xu W – Endothelial dysfunction correlates with decompression bubbles in rats
Sci Rep 2016; 6:333-9
https://www.nature.com/articles/srep33390

Zhang K, Wang M, Wang H, Liu Y, Buzzacott P, Xu W – Time course of endothelial dysfunction induced by decompression bubbles in rats
Frontiers in Physiology 2017
https://www.frontiersin.org/articles/10.3389/fphys.2017.00181

Zhang K, Jiang Z, Ning X, Yu X, Xu J, Buzzacott P, Xu W – Endothelia-targeting protection by escin in decompression sickness rats
Sci Rep 2017; 7:41288 open report
https://www.nature.com/articles/srep41288

DCS – Exercise

Barak OF, Madden D, Lovering AT, Lambrechts K, Ljubkovic M, Dujic Z – Very few exercise-induced arterialized gas bubbles reach the cerebral vasculature
Med Sci Sports and Exerc 2015; 47: 1798-1805
https://europepmc.org/abstract/med/25628180

Blatteau JE, et al – Aerobic exercise 2 hours before a dive to 30 msw decreases bubble formation after decompression
Aviat Space Environ Med 2005; 76: no 7
https://www.researchgate.net/profile/Emmanuel_Gempp2/publication/7726974_Aerobic_exercise_2_hours_before_a_dive_to_30_msw_decreases_bubble_formation_after_decompression/links/590039ef0f7e9bcf6545678a/Aerobic-exercise-2-hours-before-a-dive-to-30-msw-decreases-bubble-formation-after-decompression.pdf

Blatteau JE, et al – Haemodynamic changes induced by submaximal exercise before a dive and its consequences on bubble formation
Br. J. Sport Med 2007, 41:375-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465332/

Bosco G, Paoli A, Camporesi E – Aerobic demand and scuba diving: concerns about medical evaluation
Diving and Hyperbaric Med 2014; 44 (2): 61-63
https://www.eubs.org/documents/DHM%20Vol44%20No2.pdf#page=3

Castagna O, Brisswalter J, Vallee N, Blatteau JE  – Endurance exercise immediately before sea diving decreases bubble formation
Eur J Appl Physiol 2011; 111: 1047-54
https://link.springer.com/article/10.1007/s00421-010-1723-0

Dujic Z, et al – Aerobic exercise before diving reduces venous gas bubble formation in humans
J Physiol 2004; 637-42
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2003.059360

Dujic Z, et al – Exercise-induced intrapulmonary shunting of venous gas emboli does not occur after open-sea diving
J Appl Physiol 2005; 99 (3): 944-949
https://www.physiology.org/doi/full/10.1152/japplphysiol.01431.2004

Dujic Z, et al –  Exercise during a 3-min decompression stop reduces postdive venous gas bubbles
Medicine and Science in Sports and Exercise 2005; 37: 1319-1323
https://europepmc.org/abstract/med/16118578

Dujic Z, Obad A, Palada I, Ivancev V, Valic ZVenous Bubble count declines during strenuous exercise after an open sea dive to 30 m
Aviat Space Environ Med 2006; 77:592-6
http://www.elgps.com/documentos/Buceo/BurbujasTrasEjercicio.pdf

Dujic Z, Valic Z, Brubakk AO  – Beneficial role of exercise on scuba diving
Exerc Sport Sci Reviews 2008; 36: 38-42
http://www.uhms.org/images/DCS-and-AGE-Journal-Watch/dujic_beneficial_role_exerc.pdf

Gennser M, Jurd KM, Blogg SLPre-dive exercise and post dive evolution of venous gas emboli
Aviat Space Environ Med 2012; 83: 30-34
https://www.ingentaconnect.com/content/asma/asem/2012/00000083/00000001/art00007

Jankowski LW, Nishi RY, Eaton DJ, Griffin APExercise during decompression reduces the amount of venous gas emboli
Journal of Undersea and Hyperbaric Medicine 1997; 24: 59-65
https://europepmc.org/abstract/med/9171464

Jankowski LW, Tikuisis P, Nishi RYExercise effects during diving and decompression on postdive venous gas emboli
Aviat Space Environ Med 2004; 75: 489-95
http://cradpdf.drdc-rddc.gc.ca/PDFS/unc102/p523665_A1b.pdf

Jorgensen A, Ekdahl A, Havnes M, Eftedal I – Eccentric exercise 48 h prior to simulated diving has no effect on vascular bubble formation in rats
Eu J Appl Physiol 2015; 115: 597-605
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2444371/Manuscript+revision-EJAP-D-14-00513-Effects+of+eccentric+exercise+48h+prior+to+diving-Jorgensen.pdf?sequence=1

Jurd KM, Thacker JC, Seddon FM, Gennser M, Loveman GA – The effect of pre-dive exercise timing, intensity and mode on post-decompression venous gas emboli
Diving Hyperb Med 2011; 41: 183-188
http://dspace.rubicon-foundation.org:8080/xmlui/bitstream/handle/123456789/10364/DHM_V41N4_3.pdf?sequence=1

Kodja G, Hambrecht R – Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy?
Cardiovascular Research 2005; 67: 187-97
https://academic.oup.com/cardiovascres/article/67/2/187/284168

Løset A Jr, Møllerløkken A, Berge V, Wisløff U, Brubakk AOPost-dive bubble formation in rats: effects of exercise 24h ahead repeated 30 min before the dive
Aviat Space Environ Med 2006; 77: 905-8
https://www.ingentaconnect.com/content/asma/asem/2006/00000077/00000009/art00002

Ljubkovic M, Zanchi J, Breskovic T, Marinovic J, Lojpur M, Dujic Z – Determinants of arterial gas embolism after scuba diving
J Appl Physiol 2012; 112: 91-95
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00943.2011

Madden D, Lozo M, Dujic Z, Ljubkovic M – Exercise after SCUBA diving increases the incidence of arterial gas embolism
J Appl Physiol 2013; 115: 716-722
https://www.physiology.org/doi/full/10.1152/japplphysiol.00029.2013

Madden D, Thom SR, Yang M, Bhopale VM, Ljubkovic M, Dujic Z – High intensity cycling before SCUBA diving reduces post-decompression microparticle production and neutrophil activation
Eur J Appl Physiol 2014; 114: 1955-61
https://link.springer.com/article/10.1007/s00421-014-2925-7

Madden D, Thom SR, Milovanova TN, Yang M, Phopale VM, Ljubkovic M, Dujic Z – Exercise before SCUBA diving ameliorates decompression-induced neutrophil activation
Med Sci Sports Exerc 2014; 46:1928-1935
https://europepmc.org/abstract/med/24576865

Madden D, Ljubkovic M, Dujic Z – Intrapulmonary shunt and SCUBA Diving: Another Risk Factor?
J Cardiovasc Ultrasound and Allied Techn. 2015; 32: S205-S210
https://onlinelibrary.wiley.com/doi/abs/10.1111/echo.12815

Madden D, Thom SR, Dujik Z – Exercise before and after SCUBA diving and the role of cellular microparticles in decompression stress
Medical Hypotheses 2016; 86: 80-84
https://www.sciencedirect.com/science/article/pii/S0306987715004600

Madden D, Barak O, Thom SR, Yang M, Bhopale VM, Ljubkovic M, Dujic Z – The impact of predive exercise on repetitive SCUBA diving
Clin Physiol Funct Imaging 2016; 36: 197-205
https://onlinelibrary.wiley.com/doi/abs/10.1111/cpf.12213

Sayer MDJ, Akroyd J, Williams GD – Comparative incidence of decompression illness in repetitive, staged, mixed-gas decompression diving: is ‘dive fitness’ an influencing factor?
Diving Hyperb Med 2008; 38: 62-67
https://www.researchgate.net/profile/Neal_Pollock/publication/225301265_Breath-hold_diving_Performance_and_safety/links/0a85e530e2c8082259000000/Breath-hold-diving-Performance-and-safety.pdf#page=4

Wisløff U, Brubakk AO – Aerobic endurance training reduces bubble formation and increases survival in rats exposed to hyperbaric pressure
J Physiol 2001; 607-11
https://physoc.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-7793.2001.00607.x

Wisløff U, Richardson RS, Brubakk AOExercise and nitric oxide prevent bubble formation: a novel approach to the prevention of decompression sickness?
J Physiol 2004; 825-9
https://onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2003.055467

DCS – Heat Shock Protein

Blatteau JE, Gempp E, Balestra C, Mets T, Germonpre P  – Predive sauna and venous gas bubbles upon decompression from 400 kPa
Aviat Space Environ Med 2008; 79: 1100-5
http://www.uhms.org/images/DCS-and-AGE-Journal-Watch/blatteau_predive_sauna_aviat.pdf

Bye A, Medbye C, Brubakk AO – Heat shock treatment prior to dive increases survival in rats
In: Grandjean B, Melliet J-L, eds. Proceedings of the 30th annual scientific meeting of the EUBS; 2004 Sept. 15-19; Ajaccio, Corsica. Ajaccio, France: EUBS;2004:208
http://gtuem.praesentiert-ihnen.de/tools/literaturdb/project2/pdf/Bye%20A.%20-%20HSP%20-%20EUBS%202004.pdf

Djurhuus R, Nossum V, Lundsett N, Hovin W, et al – Simulated diving after heat stress potentiates the induction of heat shock protein 70 and elevates glutathione in human endothelial cells
Cell Stress Chaperons 2010; 15: 405-414
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082640/

Fismen L, Hjelde A, Svardal AM, Djurhuus R  – Differential effects on nitric oxide synthase, heat shock proteins, and glutathione in human endothelial cells exposed to heat stress and simulated diving
Europ J Appl Physiol 2011, Springer-Verlag 2011
https://link.springer.com/article/10.1007/s00421-011-2241-4

Germonpre P, Balestra C – Preconditioning to reduce decompression stress in scuba divers
Aerospace Med Hum Perfor 2017; 88: 114-120
https://www.researchgate.net/profile/Costantino_Balestra/publication/313147281_Preconditioning_to_Reduce_Decompression_Stress_in_Scuba_Divers/links/5ac1cfa0a6fdcccda65df538/Preconditioning-to-Reduce-Decompression-Stress-in-Scuba-Divers.pdf

Harris MB, Blackstone MA, Ju H, Venema VJ, Venema RCHeat-induced increases in endothelial NO synthase expression and activity and endothelial NO release
Am J Physiol Heart Circ Physiol 2003; 285: 333-40
https://www.researchgate.net/profile/M_Brennan_Harris/publication/10833253_Heat-induced_increases_in_endothelial_NO_synthase_expression_and_activity_and_endothelial_NO_release/links/576e80f208ae842225a87fb0.pdf

Havnes MB, Ahlen C, Brubakk AO, Iversen OJ – Concentration of circulating autoantibodies against HSP 60 is lowered through diving when compared to non-diving rats
Microb Ecol Health Dis 2012; 23: 10677
https://www.tandfonline.com/doi/full/10.3402/mehd.v23i0.10677

Huang KL, Wu CP, Chen YL, Kang BH, Lin YC  – Heat stress attenuates air bubble-induced acute lung injury: a novel mechanism of diving acclimatization
J Appl Physiol 2003; 94: 1485-1490
https://www.physiology.org/doi/full/10.1152/japplphysiol.00952.2002

Kregel KC – Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance
J Appl Physiol 2002; 92: 2177-86
http://psasir.upm.edu.my/id/eprint/19527/1/FP%202011%201.pdf

Matsuo H, Shinomiya N, Suzuki SHyperbaric stress during saturation diving induces lymphocyte subset changes and heat shock protein expression
UHM:2000; 27: 37-41
https://search.proquest.com/openview/a0e84989004bbd3dc45453e5e4f40d52/1?pq-origsite=gscholar&cbl=48053

Medby C, Bye A, Wisløff U, Brubakk AOHeat shock increases survival in rats exposed to hyperbaric pressure
Diving and Hyperbaric Medicine 2008; 38(4): 189-193
https://www.researchgate.net/profile/Christian_Medby/publication/225301324_Heat_shock_increases_survival_in_rats_exposed_to_hyperbaric_pressure/links/0deec52e3e9d7c48d2000000.pdf

Su CL, et al – Acclimatization to neurological decompression sickness in rabbits
Am J Physiol Regul Integr Comp Physiol 2004; 287: 1214-8
https://www.physiology.org/doi/full/10.1152/ajpregu.00260.2004

DCS – Helium, Nitrogen

Brebeck AK, Deussen A, Range U, Balestra C, Cleveland S, Schipke JD – Beneficial effect of enriched air nitrox on bubble formation during scuba diving. An open-water study
J Sports Science 2018; 6: 605-612
https://shapeamerica.tandfonline.com/doi/abs/10.1080/02640414.2017.1326617#.W52U8C2ZNQI

Doolette DJ, Upton RN, Grant C – Altering blood flow does not reveal differences between nitrogen and helium kinetics in brain or in skeletal miracle in sheep
J Appl Physiology 2015; 118: 586-594
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00944.2014

Hamilton BR, Thalman ED, Flynn ET, Temple D – No-stop 60 fsw wet and dry dives using air, heliox, and oxygen-nitrogen mixtures
Technical Report. Silver Springs (MD): Naval Medical Research Institute, 2002. Report No: 2002-002
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA452905

Hu HJ, Fan DF, Lv Y, Zhang Y, Yang C, Zhao L, Zhao RG, Pan XW – Effects of simulated heliox diving at high altitudes on blood cells, liver functions and renal functions
Undersea Hyperb Med 2013; 40: 329-337
https://europepmc.org/abstract/med/23957203

Olszanski R, et al – Trimix instead of air, decreases the effect of short-term hyperbaric exposures on platelet and fibrinolysis activation
Adv Med Sci. 2010; 55: 313-316
https://www.sciencedirect.com/science/article/pii/S189611261460047X

Shannon J – The relationship of inert gas and venous gas emboli to decompression sickness
2003 M.S. Thesis, Mechanical Engineering and Materials Sciences Dept.: Duke University
http://archive.rubicon-foundation.org/xmlui/bitstream/handle/123456789/3431/ShannonMS.pdf?..

Thalman ED, et al – Development of a Decompression Algorithm for Constant 0.7 ATA Oxygen Partial Pressure in Helium Diving
Technical Report. Panama City (FL): Navy Experimental Diving Unit, 1985
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA158142

Wienke BR, O’Leary TR – Deep stops and deep helium RGBM – Technical Series 9
http://cavediving-instructors.ch/PDF-dateien/deepHelium.pdf

 

 

DCS – Hydration

Blatteau JE, et al – Hemodynamic changes induced by submaximal exercise before a dive and its consequences on bubble formation
Br. J. Sport Med 2007, 41:375-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465332/

Blatteau JE, Gempp E, Balestra C, Mets T, Germonpre PPredive sauna and venous gas bubbles upon decompression from 400 kPa
Aviat Space Environ Med 2008; 79: 1100-5
http://www.uhms.org/images/DCS-and-AGE-Journal-Watch/blatteau_predive_sauna_aviat.pdf

Castagna O, Brisswalter J, Vallee N, Blatteau JEEndurance exercise immediately before sea diving decreases bubble formation
Eur J Appl Physiol 2011; 111: 1047-54
https://link.springer.com/article/10.1007/s00421-010-1723-0

Castagna O, Blatteau JE, Vallee N, Schmid B, Regnard J – The underestimated compression effect of neoprene wetsuit on divers hydromineral homeostasis

Int J Sports Med 2013; 34: 1043-1050
https://www.researchgate.net/profile/Olivier_Castagna/publication/239948454_The_Underestimated_Compression_Effect_of_Neoprene_Wetsuit_on_Divers_Hydromineral_Homeostasis/links/0deec52a7484391015000000.pdf

ConkinJ, et al – Effect of hydration on nitrogen washout in human subjects
Houston, TX: NASA, Johnson Space Center; 1983: 1-20
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830018177.pdf

Fahlman A, Dromsky DM – Dehydration effects on the risk of severe decompression sickness in a swine model
Aviat Space Environ Med 2006; 77: No 2
http://www.zoology.ubc.ca/~fahlman/pub-link/Diving/lasix/Fahlman-ASEM-77-102-106-2006.pdf

Gempp E, Blatteau JE, Pontier JM, Balestra C, Louge PPreventive effect of pre-dive hydration on bubble formation in divers
British Journal of Sports Medicine 2009; 43: 224-228
http://www.academia.edu/download/45488028/Preventive_effect_of_pre-dive_hydration_20160509-19090-17pj8f4.pdf

DCS – Hydrogen

De Maistre S, Vallee N, Gempp E, Lambrechts K, Louge P, Duchamp C, Blatteau JE – Colonic fermentation promotes decompression sickness in rats
Sci Rep 2016; 6: 20379
https://www.nature.com/articles/srep20379

De Maistre S, Vallee, Gempp E, Louge P, Duchamp C, Blatteau JE – Gut fermentation seems to promote decompression sickness in humans
J Appl Physiol 2016; 121: 973-979
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00503.2016

Fahlman A, Tikuisis P, HImm JF, Weathersby PK, Kayar SR – On the likelihood of decompression sickness during H2 biochemical decompression in pigs
J Appl Physiol 2001; 91: 2720-29
https://www.physiology.org/doi/full/10.1152/jappl.2001.91.6.2720

Kayar SR, Miller TL, Wolin MJ, Aukhert EO, Axley MJ, Kiesow LA – Decompression sickness risk in rats by microbial removal of dissolved gas
Am J Phyiol 1998; 275: R677-82
https://www.physiology.org/doi/full/10.1152/ajpregu.1998.275.3.r677

Kayar SR, Fahlman A, Lin WC, Whitman WB – Increasing activity of H(2)-metabolizing microbes lowers decompression sickness risk in pigs during H(2) dives
J Appl Physiol 2001; 91:2713-19
https://www.physiology.org/doi/full/10.1152/jappl.2001.91.6.2713

Lillo RS, Parker EC, Porter WR – Decompression comparison of helium and hydrogen in rats
J Appl Physiol 1997; 82: 892-901
https://www.physiology.org/doi/full/10.1152/jappl.1997.82.3.892

Ni XX, Cai ZY, Fan DF, Liu Y, Zhang RJ, Liu SL, et al – Protective effect of hydrogen-rich saline on decompression sickness in rats
Aviat Space Environ Med 2011; 82: 604-9
https://www.researchgate.net/profile/Xue_Jun_Sun2/publication/51247042_Protective_Effect_of_Hydrogen-Rich_Saline_on_Decompression_Sickness_in_Rats/links/0c960527063f74a0ed000000.pdf

DCS – Inflammation, Complement Activation

Ersson A, Linder C, Ohlsson K, Ekholm A – Cytokine response after acute hyperbaric exposure in the rat
UHM 1998; 25: 217-221
https://search.proquest.com/openview/607dfdd229ef2115da10e7e453c34f67/1?pq-origsite=gscholar&cbl=48053

Little T, Butler BD – Pharmacological intervention to the inflammatory response from decompression sickness in rats
Aviat Space Environ Med 2008; 79: 87-93
https://www.ingentaconnect.com/content/asma/asem/2008/00000079/00000002/art00002

Montcalm-Smith EA, Fahlman A, Kayar SR – Pharmacological intervention to decompression sickness in rats: comparison of five agents
Aviat Space Environ Med 2008; 79: 7-13
http://www.academia.edu/download/42600473/MontcalmSmith_et_al-ASEM-79-7-13-2008.pdf

Nyquist P, Ball R, Sheridan MJ – Complement levels before and after dives with a high risk of DCS
UHM 2007; 34:191-197
http://dspace.rubicon-foundation.org:8080/xmlui/bitstream/handle/123456789/7349/17672175.pdf?sequence=1

Spisni E, Marabotti C, De Fazio L, Valerii MC, Cavazza E, et al – A comparative evaluation of two decompression procedures for technical diving using inflammatory responses: compartmental versus ration deco
Diving Hyperb Med 2017; 47:9-16
http://www.eubs.org/documents/DHM%20Vol47(1).pdf#page=11

Thom SR, Bennett M, Banham ND, Chin W et al – Association of microparticles and neutrophil activation with decompression sickness
J Appl Physiol 2015;
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00380.2015

Thom SR, Bhopale VM, Yang M – Neutrophils generate microparticles during exposure to inert gases due to cytoskeletal oxidative stress
J Bio Chem 2014;
http://www.jbc.org/content/early/2014/05/27/jbc.M113.543702.full.pdf

Thom SR, et al – Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury
J Appl Physiol 2013; 114(5): 550-558
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01386.2012

Thom SR, Milovanova TN, Bogush M, Bhopale VM, Yang M et al. – Bubbles, microparticles, and neutrophil activation: changes with exercise level and breathing gas during open-water SCUBA diving
J Appl Physiol 2013; 114: 1396-1405
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00106.2013

Thom SR, et al – Microparticle production, neutrophil activation, and intravascular bubbles following open-water SCUBA diving
J Appl Physiol 2012; 112: 1268-78
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01305.2011

Thom RS, Yang M, Bhopale VM, Huang S, Milovanova TNMicroparticles initiate decompression-induced neutrophil activation and subsequent vascular injuries
J Appl Physiol 2011; 110: 340-351
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00811.2010

Ward CA, McCullough D, Fraser WD  – Relation between complement activation and susceptibility to decompression sickness
J Appl Physiol 1987; 62: 1160-6
https://www.physiology.org/doi/abs/10.1152/jappl.1987.62.3.1160

Yang M, Milovanova TN, Bogush M, Uzun G, et al – Microparticle enlargement and altered surface proteins after air decompression are associated with inflammatory vascular injuries
J Appl Physiol 2012; 112: 204-211
https://www.physiology.org/doi/full/10.1152/japplphysiol.00953.2011

Yang M, Barak OF, Dujic Z, Madden D, Bhopale VM, Bhullar J, Thom SR – Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving
Am J Physiol Regu 2015; 309: 338-344
https://www.physiology.org/doi/full/10.1152/ajpregu.00155.2015

Yang M, Bhopale VM, Thom SR – Separating the roles of nitrogen and oxygen in high pressure-induced blood-borne microparticle elevations, neutrophil activation, and vascular injury in mice
J Appl Physiol 2015; 119: 219-222
https://www.physiology.org/doi/full/10.1152/japplphysiol.00384.2015

Yang M, Bhopale VM, Thom SR – Ascorbic acid abrogates microparticle generation and vascular injuries associated with high-pressure exposure
J Appl Physiol 2015; 119: 77-82
https://www.physiology.org/doi/full/10.1152/japplphysiol.00183.2015

DCS – Patent Foramen Ovale (PFO) / Intrapulmonary A-V Shunt

Balestra C, Germonpre P – Correlation between Patent Foramen Ovale, cerebral “lesions” and neuropsychometric testing in experienced sports divers: does diving damage the brain?
Front Psychol 2016; 7: 969 open access
https://www.frontiersin.org/articles/10.3389/fpsyg.2016.00696

Barak OF, Madden D, Lovering AT, Lambrechts K, Ljubkovic M, Dujic Z – Very few exercise-induced arterialized gas bubbles reach the cerebral vasculature
Med Sci Sports and Exerc 2015; 47: 1798-1805
https://europepmc.org/abstract/med/25628180

Billinger M, Zbinden R, Mordasini R, et al. – Patent foramen ovale closure in recreational divers: effect on decompression illness and ischaemic brain lesions during long-term follow-up
Heart. 2011; 97:1932-7
https://www.researchgate.net/profile/Bernhard_Meier/publication/51643226_Patent_foramen_ovale_closure_in_recreational_divers_Effect_on_decompression_illness_and_ischaemic_brain_lesions_during_long-term_follow-up/links/541b14bf0cf25ebee988ecb9.pdf

Boussuges A Pontier JM, Schmid B, Dussault C – Paradoxical gas embolism after SCUBA diving: Hemodynamic changes studied by echocardiography
Scan J Med Sci Sports 2014; 24: 111-116
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0838.2012.01474.x

Bove AA – Risk of decompression sickness with patent foramen ovale
Journal of UHMS 1998; 25(3): 175-78
https://search.proquest.com/openview/8bf22f4adcf1ee21de2d4394e96c82ff/1?pq-origsite=gscholar&cbl=48053

Furlan AJ, et al.- Closure or medical therapy for cryptogenic stroke with patent foramen ovale
N Engl J Med. 2012;366:991-9
https://www.researchgate.net/profile/Mark_Reisman/publication/221894952_Closure_or_Medical_Therapy_for_Cryptogenic_Stroke_with_Patent_Foramen_Ovale/links/589d4b3792851c599c975aca/Closure-or-Medical-Therapy-for-Cryptogenic-Stroke-with-Patent-Foramen-Ovale.pdf

Gempp E, Blatteau J, Stephant E, Louge P, – Relation between right-to-left shunts and spinal cord decompression sickness in divers
Int J Sports Med 2009;30:150-3
https://hal-ssa.archives-ouvertes.fr/ssa-00322736/file/article_IJSM_revision_2.pdf

Germonpre P, Dendale P, Unger P, Balestra CPatent foramen ovale and decompression sickness in sport divers
J Appl Physiol 1998;84:1622-6
https://www.physiology.org/doi/full/10.1152/jappl.1998.84.5.1622

Germonpre P, Hastir F, Dendale P,et al. – Evidence for increasing patency of the patent foramen ovale in divers
Am J Cardiol 2005;95;912-15
http://www.academia.edu/download/40133673/Evidence_for_Increasing_Patency_of_the_F20151118-6481-shxl4r.pdf

Gin KG, Huckell VF, Pollick C – Femoral vein delivery of contrast medium enhances transthoracic echocardiographic detection of patent foramen ovale
J Am Coll Cardiol 1993;22:1994-2000
http://www.onlinejacc.org/content/accj/22/7/1994.full.pdf

Guenzani S, Azzopardi E, Sieber A – Inner-ear decompression sickness in nine trimix recreational divers
Diving Hyperb Med 2016; 46: 111-116
http://www.eubs.org/documents/DHM%20Vol46(2).pdf#page=45

Hagan PT, Scholz DG, Edwards WD – Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts
Mayo Clin Proc 1984;59:17-20
https://www.researchgate.net/profile/William_Edwards/publication/16502759_Incidence_and_Size_of_Patent_Foramen_Ovale_During_the_First_10_Decades_of_Life_An_Autopsy_Study_of_965_Normal_Hearts/links/5a98371645851535bce0b9a6/Incidence-and-Size-of-Patent-Foramen-Ovale-During-the-First-10-Decades-of-Life-An-Autopsy-Study-of-965-Normal-Hearts.pdf

Kerut EK, Norfleet WT, Plotnick GD, Giles TD – Patent foramen ovale: a review of associated conditions and the impact of physiological size
J Am Coll Cardiol 2001;38 (3): 613-623
http://www.onlinejacc.org/content/accj/38/3/613.full.pdf

Klingmann C, Rathmann N, Hausmann D, et al. – Lower risk of decompression sickness after recommendation of conservative decompression practices in divers with and without vascular right-to-left shunt 
Diving and Hyperbaric Medicine 2012;42(3):146-150
http://www.eubs.org/documents/DHM%20vol42%20no3.pdf#page=24

Latson GW, Camarata AS – Case control study of type II decompression sickness associated with patent foramen ovale in experimental do-decompression dives
Technical Report. Panama City (FL): Navy Experimental Diving Unit; 2010. Report No: 10-07
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/9964/a549171.pdf?sequence=1

Ljubkovic M, Zanchi J, Breskovic T, Marinovic J, Lojpur M, Dujic Z – Determinants of arterial gas embolism after scuba diving
J Appl Physiol 2012; 112: 91-95
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00943.2011

Lovering AT, Stickland MK, Amann M, Murphy JC, O’Brien MJ, et al – Hyperoxia prevents exercised-induced intrapulmonary arteriovenous shunt in healthy humans
J Physiol 2008; 586: 4559-4565
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/jphysiol.2008.159350

Lovering AT, Duke JW, Elliott JE – Intrapulmonary arteriovenous anastomoses in humans – response to exercise and the environment
J Physiol 2015; 593: 507-520
https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.2014.275495

Madden D, Lozo M, Dujic Z, Ljubkovic M – Exercise after SCUBA diving increases the incidence of arterial gas embolism
J Appl Physiol 2013; 115: 716-722
https://www.physiology.org/doi/full/10.1152/japplphysiol.00029.2013

Madden D, Ljubkovic M, Dujic Z – Intrapulmonary shunt and SCUBA Diving: Another Risk Factor?
J Cardiovasc Ultrasound Allied Techn. 2015; 32: S205-S210
https://onlinelibrary.wiley.com/doi/abs/10.1111/echo.12815

Mitchell SJ, Doolette DJ – Pathophysiology of inner ear decompression sickness: potential role of the persistent foramen ovale
Diving and Hyperb Med 2015; 45: 105-110
https://researchspace.auckland.ac.nz/bitstream/handle/2292/34699/Mitchell_PathophysiologyOf+IE+DCS.pdf?sequence=12

Moon RE, Camporesi EM, Kisslo JA – Patent foramen ovale and decompression sickness in divers
Lancet 1989; 1:513-14
https://www.sciencedirect.com/science/article/pii/S0140673689900640

Saguner AM, Wahl A, Praz F et al. – Figulla PFO occluder versus Amplatzer PFO occluder for percutaneous closure of patent foramen ovale
Catheter Cardiovasc Interv 2011; 77:709-14
https://onlinelibrary.wiley.com/doi/abs/10.1002/ccd.22737

Schuchlenz HW, Wahl A, Praz Fet al – A large Eustachian valve is a confounder of contrast but not of color Doppler transesophageal echocardiography in detecting a right-to-left shunt across a patent foramen ovale
Int J Cardiol 2006; 109:375-80
https://www.sciencedirect.com/science/article/pii/S0167527305008491

Schwerzmann M, Seiler C, LippE, et al  – Relation between directly detected patent foramen ovale and ischemic brain lesions in sport divers 
Ann Intern Med 2001; 134:21-4
http://tsa.kapsi.fi/files/deko/PFO%20and%20diving.pdf

Scott P, Wilson N, Veldtman G – Fracture of a GORE HELEX septal occluder following PFO closure in a diver
Catheter Cardiovasc Interv 2009; 73:828-31
https://onlinelibrary.wiley.com/doi/abs/10.1002/ccd.21901

Sykes O, Clark JE – Patient Foramen Ovale and Scuba Diving: A Practical Guide for Physicians on When to Refer for Screening
Extreme Physiology & Medicine 2013; 2:10
https://extremephysiolmed.biomedcentral.com/articles/10.1186/2046-7648-2-10

Toti SR, et al – Risk of decompression illness among 230 divers in relation to the presence and size of patent foramen ovale
Eur Heart J 2004; 25 (12): 1014-20
https://academic.oup.com/eurheartj/article-abstract/25/12/1014/504738

Wahl A, et al – Safety and feasibility of percutaneous closure of patent foramen ovale without intra-procedural echocardiography in 825 patients
Swiss Med Wkly. 2008:138:567-72
https://smw.ch/resource/jf/journal/file/download/article/smw/en/smw.2008.12255/smw.2008.12255.pdf/

Wilmhurst PT, Ellis BG, Jenkins BS – Paradoxical gas embolism in a scuba diver with an atrial septal defect
Br Med J (Clin Res Ed) 1986; 293:1277
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1342110/pdf/bmjcred00261-0025a.pdf

Wilmshurst, PT, Byrne JC, Webb-Peploe MM – Relation between interatrial shunts and decompression sickness in divers 
Lancet. 1989; 334:1302-130
http://gtuem.praesentiert-ihnen.de/tools/literaturdb/project2/pdf/Wilmshurst%20P.T.%20-%20EUBS%201990%20-%20S.%20147.pdf

Wilmshurst PT, Bryson P – Relationship between the clinical features of neurological decompression illness and its causes
Clin Scien 2000; 99: 65-75
https://www.researchgate.net/profile/Peter_Wilmshurst/publication/12432189_Relationship_between_the_clinical_features_of_neurological_decompression_illness_and_its_causes/links/5677dbc608ae125516ee43c9.pdf

Wilmshurst PT, Nightingale S, Walsh KP, Morrison WL – Effect on migraine of closure of cardiac right-to-left shunts to prevent recurrence of decompression illness or stroke or for haemodynamic reasons
Lancet 2000; 356: 1648-51
https://www.sciencedirect.com/science/article/pii/S0140673600031603

Wilmshurst PT, Pearson MJ, Walsh KP, Morrison WL, Bryson P – Relationship between right-to-left shunts and cutaneous decompression illness
Clin Science 2001; 100: 539-42
https://www.researchgate.net/profile/Peter_Wilmshurst/publication/12038773_Relationship_between_right-to-left_shunts_and_cutaneous_decompression_illness/links/56b9d6f308ae7e3a0fa08d76/Relationship-between-right-to-left-shunts-and-cutaneous-decompression-illness.pdf

Wilmshurst PT, Pearson M, Nightingale S – Reevaluation of the relationship between migraine and persistent foramen ovale and other right-to-left shunts
Clin Scien 2005; 108: 365-367
https://pdfs.semanticscholar.org/11f0/2b61f1c29f38335bedc02d331d21a1b3871f.pdf

DCS – Pharmacological Interventions

Bao XC, Chen H, Fang YQ, Yuan HR, You P, Ma J, Wang FF – Clopidogrel reduces the inflammatory response of lung in a rat model of decompression sickness
Resp Physio & Neurob 2015; 211:9-16
https://www.sciencedirect.com/science/article/pii/S1569904815000439

Bennet M, Mitchell S, Dominguez A – Adjunctive treatment of decompression illness with a non-steroidal anti-inflammatory drug (Tenoxicam) reduces compression requirement
UHM 2003; 30: 195-205
https://powcs.med.unsw.edu.au/sites/default/files/powcs/group/2003TenoxicamBennett.pdf

Blatteau JE, Barre S, Pascual A, Castagna O, Abraini JH, et al – Protective effects of Fluoxetine on decompression sickness in mice
PLoS ONE 2012, 7(11): e49069. doi:10.1371/journal.pone.0049069
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049069

Blatteau JE, de Maistre S, Lambrechts K, Abraini J, Risso JJ, Vallee N – Fluoxetine stimulates anti-inflammatory IL-10 cytokine production and attenuates sensory deficits in a rat model of decompression sickness
J Appl Physiol 2015; 119: 1393-1399
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00602.2015

Cosnard C, De Maistre S, Abraini, Chazalviel L, Blatteau JE et al – Thirty-five day Fluoxetine treatment limits sensory-motor deficit and biochemical disorders in a rate model of decompression sickness
Frontiers Phys – open access 2017;00604
https://www.frontiersin.org/articles/10.3389/fphys.2017.00604

Dromsky DM, Weathersby PK, Fahlman – Prophylactic high dose methylprednisolone fails to treat severe decompression sickness in swine
Aviat Space Environ Med 2003; 74: 21-8
https://www.researchgate.net/profile/Andreas_Fahlman/publication/10935260_Prophylactic_high_dose_methylprednisolone_fails_to_treat_severe_decompression_sickness_in_swine/links/599fcdddaca2724fca7ff415/Prophylactic-high-dose-methylprednisolone-fails-to-treat-severe-decompression-sickness-in-swine.pdf

Dujic Z, et al – Exogenous nitric oxide and bubble formation in divers
Med. Sci. Sports Exerc., 2006; 38: 1432-5
http://www.academia.edu/download/42599122/Exogenous_nitric_oxide_and_bubble_format20160211-25488-121xluf.pdf

Duplessis CA, Fothergill D, Schwaller D, Hughes L, Gertner J  – Prophylactic statins as a possible method to decrease bubble formation in diving
Aviat Space Environ Med 2007; 78: 430-4
https://www.ingentaconnect.com/content/asma/asem/2007/00000078/00000004/art00013

Duplessis CA, Fothergill G – Investigating the potential of statin medications as a nitric oxide (NO) release agent to decrease decompression sickness: A review article
Medical Hypothesis 2008; 70:560-566
https://www.sciencedirect.com/science/article/pii/S0306987707004380

Lambrechts K, Pontier JM, Mazur A, Theron M, Buzzacott P, et al – Mechanism of action of antiplatelet drugs on decompression sickness in rats: a protective effect of anti-GPIIbIIIa therapy
J Appl Physiol 2015; 118: 1234-1239
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00125.2015

Longphre JM, Denoble PJ, Moon RJ, Vann RD, Freiberger JJ – First aid normobaric oxygen for the treatment of recreational diving injuries
UHM 2007; 34: 43-49
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/5514/17393938.pdf?sequence=1

Mazur A, Guernec A, Lautridou J, Dupas J, Dugrenot E, Belhomme M – Angiotensin converting enzyme inhibitor has a protective effect on decompression sickness in rats
Frontiers in Phys 2018
https://www.frontiersin.org/articles/10.3389/fphys.2018.00064

Møllerløkken A, Berge VJ, Jørgensen A, Wisløff U, Brubakk AO  – Effect of a short-acting NO donor on bubble formation from a saturation dive in pigs
J Appl Physiol 2006; 101: 1541-5
https://www.physiology.org/doi/full/10.1152/japplphysiol.01191.2005

Montcalm-Smith EA, Fahlman A, Kayar SR – Pharmacological interventions to decompression sickness in rats: comparison of five agents
Aviat Space Environ Med 2008; 79: 7-13
http://www.academia.edu/download/42600473/MontcalmSmith_et_al-ASEM-79-7-13-2008.pdf

Pontier JM, Vallee N, Ignatescu M, Bourdon L – Pharmacological intervention against bubble-induced platelet aggregation in a rat model of decompression sickness
J Appl Physiol 2011; 110: 724-729
https://www.physiology.org/doi/full/10.1152/japplphysiol.00230.2010

Vallee N, Meckler C, Risso JJ, Blatteau – Neuroprotective role of the TREK-1 channel in decompression sickness
J Appl Physiol 2012; 112: 1191-96
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01100.2011

Vallee N, Lambrechts K, De Maistre S, Royal P et al – Fluoxetine protection in decompression sickness in mice is enhanced by blocking TREK-1 potassium channel with the “spadin” antidepressant
Front Physiol 2016; 7:42
https://www.frontiersin.org/articles/10.3389/fphys.2016.00042

Zhang K, Wang D. Zu J, Li R, Cai Z, Liu K et al. – Simvastatin decreases incidence of decompression sickness in rats
UHM 2015; 42: 115-123
https://europepmc.org/abstract/med/26094286

DCS – Pre-oxygenation, Hyperbaric Pretreatment

Ariel R, Boaron, E, Abramovich A – Combined effect of denucleation and denitrogenation on the risk of decompression sickness in rats
J Appl Phys 2009; 106:1453-1458
https://www.physiology.org/doi/full/10.1152/japplphysiol.91146.2008

Blatteau JE, et al – Oxygen breathing or recompression during decompression from nitrox dives with a rebreather: effects on intravascular bubble burden and ramifications for decompression profiles
Eur J Appl Physiol 2012; 112:2257-65
https://link.springer.com/article/10.1007/s00421-011-2195-6

Bosco G, et al – Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation
J Appl Physiol 2010; 108: 1077-83
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01058.2009

Castagna O, Gempp E, Blatteau JEPre-dive normobaric oxygen decreases bubble formation in scuba divers
Eur J App Phys 2009; 106:167-72
https://www.researchgate.net/profile/Olivier_Castagna/publication/24012612_Pre-dive_normobaric_oxygen_reduces_bubble_formation_in_scuba_divers/links/0a85e53889fcf95112000000/Pre-dive-normobaric-oxygen-reduces-bubble-formation-in-scuba-divers.pdf

Fan DF, et al – Hyperbaric oxygen preconditioning reduces the incidence of decompression sickness in rats via nitric oxide
UHM 2010; 37: no 3
http://archive.rubicon-foundation.org/xmlui/bitstream/handle/123456789/9525/20568547.pdf?sequence=1

Landolfi A, et al – Pre-treatment with hyperbaric oxygenation reduces bubble formation and platelet activation
Sport Sci Health 2006; 1:122-28
http://www.academia.edu/download/45809721/s11332-006-0022-y20160520-31393-br741o.pdf

Mahon RT, Dainer HM, Gibellato MG, Soutiere SE – Short oxygen prebreathe periods reduce or prevent severe decompression sickness in a 70-kg swine saturation model
J Appl Physio 2009; 106:1459-1463
https://www.physiology.org/doi/full/10.1152/japplphysiol.91058.2008

Martin JD, Thom SR – Vascular leukocyte sequestration in decompression sickness and prophylactic hyperbaric oxygen therapy in rats
Aviat Space Environ Med 2002; 76(6):565-9
https://europepmc.org/abstract/med/12056672

DCS – Temperature

Clarke JR, Moon RE, Chimiak JM, Stinton R, Van Hoesen KB, Lang MA – Don’t dive cold when you don’t have to
Diving and Hyperbaric Med 2015; 45: 62
https://www.ncbi.nlm.nih.gov/pubmed/25964043

Gerth WA, Ruterbusch VL, Long ET – The influence of thermal exposure on diver susceptibility to decompression sickness
Technical Report. Panama City (FL); Navy Experimental Diving Unit; 2007. Report No: 06-07
http://archive.rubicon-foundation.org/xmlui/bitstream/handle/123456789/5063/NEDU_2007_06.pdf?sequence=1

Lippit MW, Nuckols ML – Active diver thermal protection requirements for cold water diving
Aviat Space Environ Med 1983; 54: 644-648
https://europepmc.org/abstract/med/6882334

Risberg J, Hope A – Thermal insulation properties of argon used as a dry suit inflation gas
Undersea Hyperb Med 2001; 28: 137-143
http://www.angelfire.com/ca/divers3/Argon.pdf

Toner CB, Ball R – The effect of temperature on decompression and decompression sickness risk: a critical review
Technical Report. Silver Spring (MD): Naval Medical Research Center; 2004. Report No: 2004-003
http://archive.rubicon-foundation.org/xmlui/bitstream/handle/123456789/4978/ADA445847.pdf?sequence=1

DCS – Viagra/Phosphodiesterase-5 blocker

Blatteau JE, Brubakk AO, Gempp E, Castagna O, Risso JJ, Vallee N – Sidenafil pre-treatment promotes decompression sickness in rats
PLoS ONE 2013, 8(4): e60639. doi:10.1371/journal.pone.0060639
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060639

Demchenko IT, Allen BW, Vann RD, Piantadosi CA – Phosphodiesterase-5 inhibitors oppose hyperoxic vasoconstriction and accelerate seizure development in rats exposed to hyperbaric oxygen
J Appl Physio 2009; 106: 1234-1242
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.91407.2008

DCS – Vibration

Germonpre P, et al – Pre-dive vibration effect on bubble formation after a 30-m dive requiring a decompression stop
Aviat Space Environ Med 2009; 81: 1044-8
https://www.uhms.org/images/DCS-and-AGE-Journal-Watch/germonpr__pre-dive_vibration.pdf

Balestra C – Lymphatic pathway for microbubbles (Editorial)
Diving and Hyperb Med 2014; 44: 1
https://www.researchgate.net/profile/Costantino_Balestra/publication/261256943_The_lymphatic_pathway_for_microbubbles_Costantino_Balestra/links/0a85e5353a876aa451000000/The-lymphatic-pathway-for-microbubbles-Costantino-Balestra.pdf

Balestra C, Theunissen S, Papadopoulou V, Le Mener C, Germonpre P, Guerrero F, Lafere P – Pre-dive whole-body vibration better reduces decompression-induced vascular gas emboli than oxygenation or a combination of both
Front Physiol 2016; 7: 586
https://www.frontiersin.org/articles/10.3389/fphys.2016.00586

Germonpre P, Balestra C – Preconditioning to reduce decompression stress in scuba divers
Aerospace Med Hum Perfor 2017; 88: 114-120
https://www.researchgate.net/profile/Costantino_Balestra/publication/313147281_Preconditioning_to_Reduce_Decompression_Stress_in_Scuba_Divers/links/5ac1cfa0a6fdcccda65df538/Preconditioning-to-Reduce-Decompression-Stress-in-Scuba-Divers.pdf

Decompression Modeling

Brubakk AO, Arntzen AJ, Wienke BR, Koteng S – Decompression profile and bubble formation after dives with surface decompression: experimental support for a dual phase model of deco
UHM 2003; 30(3): 181-93
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/3898/14620098.pdf?sequence=1

Buzzacott P, Papadopulou V, Baddeley A, Petri NM, Lind F – Theoretical tissue compartment inert gas pressures during a deep dive with and without deep decompression stops: a case analysis
Int Marit Health 2015; 66: 36-42
https://journals.viamedica.pl/international_maritime_health/article/view/41505

Doolette DJ, Upton RN, Grant C – Altering blood flow does not reveal differences between nitrogen and helium kinetics in brain or in skeletal muscle in sheep
J Appl Physiology 2015; 118: 586-594
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.00944.2014

Eftedal OS, Tjelmeland H, Brubakk AO – Validation of decompression procedures based on detection of venous gas bubbles: a Bayesian approach
Aviat Space Environ Med 2007; 78: 94-99
https://www.ingentaconnect.com/content/asma/asem/2007/00000078/00000002/art00003

Fahlman A – Allometric scaling of decompression sickness risk in terrestrial mammals; cardiac output explains risk of decompression sickness
Sci Rep 2017; open access 7: 40918
https://www.nature.com/articles/srep40918

Feng L, Gutvik CR, Johansen TA – Optimal decompression through multi-parametric nonlinear programming
2010, 8th IFAC Symposium on nonlinear control systems
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.301.9674&rep=rep1&type=pdf

Gutvik CR, Brubakk AO – A dynamic two-phase model for vascular bubble formation during decompression of divers
Biomedical Engineering 2009; 56 (3): 884-889
http://www.academia.edu/download/39433677/A_Dynamic_Two-Phase_Model_for_Vascular_B20151026-5096-apnv0s.pdf

Gutvik CR, Dunford RG, Dujic Z, Brubakk AOParameter estimation of the Copernicus decompression model with venous gas emboli in human divers
Medical & Biological Engineering & Computing 2010; 48 (7): 625-636
https://link.springer.com/article/10.1007/s11517-010-0601-6

Hugon J – Decompression models: review, relevance and validation capabilities
Undersea Hyperb Med 2014; 41: 531-556
https://europepmc.org/abstract/med/25562945

King AE, Murphy FG, Howle LE – Bimodal decompression sickness onset times are not related to dive type or event severity
Comp Biol Med 2017; 91: 59-68
https://www.sciencedirect.com/science/article/pii/S001048251730330X

Kot J, Sicko Z, Doboszynski T – The extended oxygen window concept for programming saturation decompressions using air and nitrox
PLoS ONE 2015 10(6)
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130835

Kuch B, Buttazzo G, Sieber A – Bubble model based decompression algorithm optimized for implementation on a low power microcontroller
J Soc Underwater Techn 2011; 29: 195-202
https://www.ingentaconnect.com/contentone/sut/unwt/2011/00000029/00000004/art00005?crawler=true

Murphy GF, Hada EA, Doolette DJ, Howle LE – Probabilistic pharmacokinetic models of decompression sickness in humans, part 1: Coupled perfusion-limited compartments
Comp Biol Med 2017; 86: 55-64
https://www.sciencedirect.com/science/article/pii/S0010482517301075

Murphy GF, Hada EA, Doolette DJ, Howle LE – Probabilistic pharmacokinetic models of decompression sickness in humans: Part 2, coupled perfusion-diffusion models
Comp Biol Med 2018; 92: 90-97
https://www.sciencedirect.com/science/article/pii/S0010482517303815

Wienke BR, O’Leary TR – Statistical correlations and risk analyses techniques for a diving dual phase bubble model and data bank using massively parallel supercomputers
Computers in Biology and Medicine 2008; 38 (5): 583-600
http://www.nurkopedia.pl/images/b/bb/Dynamic_Bubble_Model.pdf

Wienke BR – Diving decompression models and bubble metrics: modern computer syntheses
Comput Biol Med 2009; 39: 309-311
https://www.sciencedirect.com/science/article/pii/S0010482508001832

Wienke BR – Computer validation and statistical correlations of a modern decompression diving algorithm
Comp Biol Med 2011; 40 (3): 252-260
https://www.researchgate.net/institution/Los_Alamos_National_Laboratory/department/Applied_Theoretical_Physics_Division/publications?nav=overview

Gender Differences

Boussuges A, Retali G, Bodéré-Melin M, Gardette B, Carturan DGender differences in circulating bubble production after SCUBA diving
Clin Physiol Funct Imaging 29:400-4005
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-097X.2009.00884.x

Hagberg M, Ornhagen H – Incidence and risk factors for symptoms of decompression sickness among male and female dive masters and instructors – a retrospective cohort study
UHM 2003; 30: 93-102
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/3962/12964853.pdf?sequence=1

Lee V, St Leger Dowse M, Edge C, Gunby A, Bryson P – Decompression sickness in women: a possible relationship with the menstrual cycle
Aviat Space Environ Med 2003; 74: 1177-1182
https://www.researchgate.net/profile/Christopher_Edge3/publication/9007221_Decompression_Sickness_in_Women_A_Possible_Relationship_with_the_Menstrual_Cycle/links/5440340e0cf2be1758cffd82/Decompression-Sickness-in-Women-A-Possible-Relationship-with-the-Menstrual-Cycle.pdf

Mazur A, Buzzacott P, Lambrechts K, et al – Different effect of L-NAME treatment on susceptibility to decompression sickness in male and female rats
Appl Phys, Nutr, and Metab 2014; 39 (11): 1280-85
http://www.nrcresearchpress.com/doi/abs/10.1139/apnm-2014-0148#.W56fhi2ZNQI

St Leger Dowse M, Lee V, Shaw S, Smerdon G, Fife C, Bryson P – A relationship between the menstrual cycle and decompression illness: Is the evidence building?
Europ Journal Underw Hyperb Med 2006; 7: 84-86
http://www.ornhagen.se/M%204%20MStLD%20EJUHM%2006.pdf

Webb JT, Kannan N, Pilmanis A – Gender not a factor for altitude decompression sickness risk
Aviat Space Environ Med 2003; 74 (1): 2-10
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA408816

Immersion Pulmonary Edema

Bates M, Farrell, Eldridge – The curious question of exercise-induced pulmonary edema
Pulm Med 2017; 2011 ID:361931
http://downloads.hindawi.com/journals/pm/2011/361931.pdf

Boussuges A, Ayme K, Chaumet G, Albier E, Borgnetta M, Gavarry O – Observational study of potential risk factors of immersion pulmonary edema in healthy divers: exercise intensity is the main contributor
Sports Med – Open 2017; 3:35
https://link.springer.com/article/10.1186/s40798-017-0104-1

Castagna O, Gempp E, Poyet R, Schmid B et al – Cardiovascular mechanism of extravascular lung water accumulation in divers
Am J Cardiol 2017; 119: 929-932
https://www.researchgate.net/profile/Olivier_Castagna/publication/314090653_Cardiovascular_Mechanisms_of_Extravascular_Lung_Water_Accumulation_in_Divers/data/58b49fb545851503bea04d37/Castagna-et-al-Am-J-Cardio.pdf

Castagna O, de Maistre S, Schmid B, Caudal D, Regnard J – Immersion pulmonary oedema in a healthy diver not exposed to cold or strenuous exercise
Diving Hyperb Med 2018; 48: 40-44
https://europepmc.org/abstract/med/29557101

Castagna O, Regnard J, Gempp E, Louge P, Brosq FX, Schmid B et al – The key roles of negative pressure breathing and exercise in the development of interstitial pulmonary edema in professional male SCUBA divers
Sports Med  Open 2018; 1-12
https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-017-0116-x

Cochard G, et al – Pulmonary edema in scuba divers: recurrence and fatal outcome
UHM 2005; Vol 32, No 1
http://dspace.rubicon-foundation.org:8080/xmlui/bitstream/handle/123456789/4032/15796313.pdf?sequence=1

Coulange M, et al – Pulmonary oedema in healthy SCUBA divers: new physiopathological pathways
Clin Physio and Func Imaging 2010; 30 (3): 181-186
https://www.nowdive.dk/images/Pulmonary%20edema%20in%20healthy%20SCUBa%20divers.pdf

Dujic Z, Obad A, Palada I, Valic Z, Brubakk AOA single open sea air dive increases pulmonary artery pressure and reduces right ventricular function in professional divers
Eur J Appl Physiol 2006; 97: 478-85
https://link.springer.com/article/10.1007/s00421-006-0203-z

Epstein M – Cardiovascular and renal effects of head-out water immersion in man
Circulation Research 1976; 39 (5): 619-28
https://pdfs.semanticscholar.org/8be9/cfb3ef8e4b58c004f5f0142d54413431a2a5.pdf

Edmonds C, Lippmann J, Lockley S, Wolfers DScuba diver’s pulmonary oedema: recurrence and fatalities
Diving Hyperb Med 2012; 42(1): 40-4
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/10404/22437975.pdf?sequence=1

Fraser JAV, et al – Risk factors for immersion pulmonary edema: hyperoxia does not attenuate pulmonary hypertension associated with cold water-immersed prone exercise at 4.7 ATA
J Appl Physiol 2011; 110: 610-18

Gempp E, Demaistre S, Louge P – Hypertension is predictive of recurrent immersion pulmonary edema in scuba divers
Int J Card 2014; 172: 528-529
https://www.researchgate.net/profile/Emmanuel_Gempp2/publication/260022772_Hypertension_is_predictive_of_recurrent_immersion_pulmonary_edema_in_scuba_divers/links/56a3430c08ae232fb204c209/Hypertension-is-predictive-of-recurrent-immersion-pulmonary-edema-in-scuba-divers

Hopkins SR – Point: Pulmonary edema does occur in human athletes performing heavy sea-level exercise
J Appl Physiol 2010; 109 (4) 1270-72
https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01353.2009

Koehle MS, Lepawsky M, McKenzie DCPulmonary oedema of immersion
Sports Med 2005; 35 (3): 183-190
https://pdfs.semanticscholar.org/56e3/4a6b7d197e8560e028c197425b64ae7a5163.pdf

Ljubkovic M, Gaustad SE, Marinovic J, Obad A, Ivancev V, Bilopavlovic N, et al – Ultrasonic evidence of acute interstitial lung edema after SCUBA diving is resolved within 2-3h
Respir Physiol Neurobiol 2010; 171: 165-170
https://www.sciencedirect.com/science/article/pii/S1569904810000546

Louge P, Coulange M, Beneton F, Gempp E et al – Pathophysiological and diagnostic implications of cardiac biomarkers and antidiuretic hormone release in distinguishing immersion pulmonary edema from decompression sickness
Medicine (Baltimore) 2016; 95:26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937958/

Lund KL, et al – Swimming-induced pulmonary edema
Annals of Em Med 2003; 41 (2): 251-256
https://www.sciencedirect.com/science/article/pii/S0196064402849927

Maggiorini M, et al – High-altitude pulmonary edema is initially caused by an increase in capillary pressure
Circulation 2001; 103: 2078-83
https://pdfs.semanticscholar.org/9d96/743be65d30b3857d5f504f306fd2b8fde249.pdf

Mahon RT, Kerr S, Amundson D, Parrish JSImmersion pulmonary edema in special forces combat swimmers
Chest 2002; 122: 383-4
https://journal.chestnet.org/article/S0012-3692(16)46335-X/pdf

Marinovic j et al – Assessment of extravascular lung water and cardiac function in trimix SCUBA diving
Medicine and Science in Sports and Exercise 2010; 42(6): 1054-61
https://europepmc.org/abstract/med/19997032

Moon RE, Martina SD, Peacher DF, Potter JF, Wester TE et al. – Swimming-induced pulmonary edema: Pathophysiology and risk reduction with Sildenafil
Circulation 2016;
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127690/

Peacher DF, et al – Effects of hyperoxia on ventilation and pulmonary hemodynamics during immersed prone exercise at 4.7 ATA: possible implications for immersion pulmonary edema

  1. Appl. Physiol. 2010; 109:(1) 68-78

https://www.physiology.org/doi/pdf/10.1152/japplphysiol.01431.2009

Peacher DF, Martina SD, Otteni CE, Wester TE, Potter JF, Moon RE – Immersion pulmonary edema and comorbidities: case series and updated review
Med Sci Sports Exerc 2015; 47:1128-34
https://europepmc.org/abstract/med/25222821

Shupak A, Guralnik L, Keynan Y, Yanir Y, Adir Y – Pulmonary edema following closed-circuit oxygen diving and strenuous swimming
Aviat Space Environ Med 2003; 74: 1201-1204
https://www.researchgate.net/profile/Avi_Shupak2/publication/9007225_Pulmonary_Edema_Following_Closed-Circuit_Oxygen_Diving_and_Strenuous_Swimming/links/55ec252b08ae65b6389df718.pdf

Slade JB Jr, Hattori T, Ray CS, Bove AA, Cianci PPulmonary edema associated with scuba diving: case report and review
Chest 2001; 120: 1686-94
https://www.researchgate.net/profile/Alfred_Bove/publication/255583163_Pulmonary_Edema_Associated_With_Scuba_Diving/links/559d42f408aec720018264cc/Pulmonary-Edema-Associated-With-Scuba-Diving.pdf

Warkander DE, Nagasawa GK, Lundgren CE – Effects of inspiratory and expiratory resistance in diver’s breathing apparatus
Undersea Hyperb Med 2001; 28: 63-73
https://search.proquest.com/openview/2e45e3d2cf70cd9f89046f6eb78d4dfa/1?pq-origsite=gscholar&cbl=48053

Wester TE, et al – Effects of head and body cooling on hemodynamics during immersed prone exercise at 1 ATA
J Appl Physiol 2009; 106: 691-700
https://www.physiology.org/doi/full/10.1152/japplphysiol.91237.2008

Winklewski PJ, Kot J, Frydrychowski AF, Nuckowska MK, Tkachenko YEffects of diving and oxygen on autonomic nervous system and cerebral blood flow
Diving and Hyperbaric Medicine 2013; 43(3): 148-156
https://europepmc.org/abstract/med/24122190

Isobaric Counterdiffusion/Inner Ear DCS

Doolette DJ, Mitchell SJ – Biophysical basis for inner ear decompression sickness
J Appl Physiol 2003; 94: 2145-50
https://www.physiology.org/doi/full/10.1152/japplphysiol.01090.2002

Mitchell SJ, Doolette DJ – Pathophysiology of inner ear decompression sickness: potential role of the persistent foramen ovale
Diving and Hyperb Med 2015; 45: 105-110
https://researchspace.auckland.ac.nz/bitstream/handle/2292/34699/Mitchell_PathophysiologyOf+IE+DCS.pdf?sequence=12

Guenzani S, Azzopardi E, Sieber A – Inner-ear decompression sickness in nine trimix recreational divers
Diving Hyperb Med 2016; 46: 111-116
http://www.eubs.org/documents/DHM%20Vol46(2).pdf#page=45

Oxygen Window

Brian JE – Gas exchange, partial pressure gradients, and the oxygen window
http://interdiving.com/articles_decompression/oxygen%20window%20V01.pdf

Kot J, Sicko Z, Doboszynski T – The extended oxygen window concept for programming saturation decompressions using air and nitrox
PLoS ONE 2015 10(6)
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130835

Van Liew HD – Simulation of the dynamics of decompression sickness bubbles and the generation of new bubbles
Undersea Biomedical Research 1991; 18 (4): 333–45
https://europepmc.org/abstract/med/1887520

Van Liew HD, Conkin J, Burkard METhe oxygen window and decompression bubbles: estimates and significance
Aviat Space Environ Med 1993; 64 (9): 859–65
https://www.researchgate.net/profile/Johnny_Conkin/publication/14983430_The_oxygen_window_and_decompression_bubbles_Estimates_and_significance/links/558bf81608ae40781c1fc9dc.pdf

Various

Brubakk AO, Ross JA, Thom SR – Saturation diving; physiology and pathophysiology
Compr Physiol 2014; 4: 1229-72
http://www.comprehensivephysiology.com/WileyCDA/CompPhysArticle/refId-c130048.html

Buzzacott P, Mazur A, Wang Q, Lambrechts K, Theron M, Guerrero F – A rat model of chronic moderate alcohol consumption and risk of decompression sickness
Diving and Hyperbaric Med 2015; 45: 75-78
http://www.eubs.org/documents/DHMJournalVol45i2_RSW.pdf#page=5

Doolette DJ – Venous gas emboli detected by two-dimensional echocardiography are an imperfect surrogate endpoint for decompression sickness
Diving Hyperb Med 2016; 46: 4-10
https://www.eubs.org/documents/DHM%20Vol46(1).pdf#page=6

Eftedal OS, Lydersen S, Brubakk AO – The relationship between venous gas bubbles and adverse effects of decompression after air dives
UHM 2007; 34: 99-105
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/6466/17520861.pdf?sequence=1

Hadanny A, Fishlev G, Bechor Y, Bergan J, et al – Delayed recompression for decompression sickness: retrospective analysis
PloS One 2015
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124919

Hjelde A, Bolstad G, Brubakk AO – The effect of air bubbles on rabbit blood brain barrier
UHM 2002; 29: 31-38
http://dspace.rubicon-foundation.org:8080/xmlui/bitstream/handle/123456789/3901/12507183.pdf?sequence=3

Hou G, Zhang Y, Zhao N, Chen R, Xiao W et al – Mental abilities and performance efficacy under a simulated 480-m helium-oxygen saturation diving
Frontiers in Psych 2015; 6:979
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00979

Howle, LE, Weber PW, Hada EA, Vann RD, Denoble PJ – The probability and severity of decompression sickness
PLoS One 2017; 12
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172665 (3)

Lautridou J, Buzzacott P, Belhomme M, Dugrenot E, et al – Evidence of heritable determinants of decompression sickness in rats
Med Sci Sports Exerc 2017; 49: 2433-2438
https://europepmc.org/abstract/med/28731987

Longphre JM, Denoble PJ, Moon RE, Vann RD, Freiberger JJ – First aid normobaric oxygen for the treatment of recreational diving injuries
UHM 2007; 34: 43-49
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/5514/17393938.pdf?sequence=1

Mollerlokken A, Breskovic T, Palada I, Valic Z, Dujic Z, Brubakk AO – Observation of increased venous gas emboli after wet dives compared to dry dives
UHM 2011; 41: 124-128
http://dspace.rubicon-foundation.org/xmlui/bitstream/handle/123456789/10311/DHM_V41N3_5.pdf?sequence=1

Vann RD, Butler FK, Mitchell SJ, Moon RE – Decompression Illness
Lancet 2010; 377:153-164
http://www.deepdivingacademy.it/corsisubtorino/download/moon-decompression-illness.pdf